Instead of allocating these in a mixture of ways, we now always put
them on the malloc heap, and keep an intrusive linked list of them
that we can iterate for GC marking purposes.
This required setting things up so that all function objects can plop
a PrimitiveString there instead of an AK string.
This is a step towards making ExecutionContext easier to allocate.
(Instead of MarkedVector<Value>.) This is a step towards not storing
argument lists in MarkedVector<Value> at all. Note that they still end
up in MarkedVectors since that's what ExecutionContext has.
This patch adds two macros to declare per-type allocators:
- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)
When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.
The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.
It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)
There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.
Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
This works by adding source start/end offset to every bytecode
instruction. In the future we can make this more efficient by keeping
a map of bytecode ranges to source ranges in the Executable instead,
but let's just get traces working first.
Co-Authored-By: Andrew Kaster <akaster@serenityos.org>
Stop worrying about tiny OOMs. Work towards #20449.
While going through these, I also changed the function signature in many
places where returning ThrowCompletionOr<T> is no longer necessary.
This loosens the connection to the AST interpreter and will allow us to
generate SourceRanges for the Bytecode interpreter in the future as well
Moves UnrealizedSourceRanges from TracebackFrame to the JS namespace for
this
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This still needs a project-wide cleanup to remove handles captured in
lambdas, which is now longer required.
For now, this will be used in the next commit implementing promise AOs
from Web IDL, which make heavy use of deferred callbacks.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Previously the variable and lexical environments were already kept in a
NativeFunction call. However when we (try to) call a private method from
within an async function we go through async_block_start which sets up
a NativeFunction to call.
This is technically not exactly as the spec describes it, as that
requires you to actually "continue" the context. Since we don't have
that concept (yet) we use this as an implementation detail to access the
private environment from within a native function.
Note that this not allow general private environment access since most
things get blocked by the parser already.
Also take a length argument and set the name and length properties
internally, instead of at the call site. Additionally, allow passing a
realm, prototype, and prefix.
Both at the same time because many of them call construct() in call()
and I'm not keen on adding a bunch of temporary plumbing to turn
exceptions into throw completions.
Also changes the return value of construct() to Object* instead of Value
as it always needs to return an object; allowing an arbitrary Value is a
massive foot gun.
Now that only ECMAScriptFunctionObject uses this, we can remove the
FunctionObject::new_function_environment() pure virtual method and just
implement it as a standalone AO with an ECMAScriptFunctionObject
parameter, next to the other NewFooEnvironment AOs.
This patch implements:
- Spec compliant [[Call]] and [[Construct]] internal slots, as virtual
FunctionObject::internal_{call,construct}(). These effectively replace
the old virtual FunctionObject::{call,construct}(), but with several
advantages:
- Clear and consistent naming, following the object internal methods
- Use of completions
- internal_construct() returns an Object, and not Value! This has been
a source of confusion for a long time, since in the spec there's
always an Object returned but the Value return type in LibJS meant
that this could not be fully trusted and something could screw you
over.
- Arguments are passed explicitly in form of a MarkedValueList,
allowing manipulation (BoundFunction). We still put them on the
execution context as a lot of code depends on it (VM::arguments()),
but not from the Call() / Construct() AOs anymore, which now allows
for bypassing them and invoking [[Call]] / [[Construct]] directly.
Nothing but Call() / Construct() themselves do that at the moment,
but future additions to ECMA262 or already existing web specs might.
- Spec compliant, standalone Call() and Construct() AOs: currently the
closest we have is VM::{call,construct}(), but those try to cater to
all the different function object subclasses at once, resulting in a
horrible mess and calling AOs with functions they should never be
called with; most prominently PrepareForOrdinaryCall and
OrdinaryCallBindThis, which are only for ECMAScriptFunctionObject.
As a result this also contains an implicit optimization: we no longer
need to create a new function environment for NativeFunctions - which,
worth mentioning, is what started this whole crusade in the first place
:^)
Before this we used an ad-hoc combination of references and 'variables'
stored in a hashmap. This worked in most cases but is not spec like.
Additionally hoisting, dynamically naming functions and scope analysis
was not done properly.
This patch fixes all of that by:
- Implement BindingInitialization for destructuring assignment.
- Implementing a new ScopePusher which tracks the lexical and var
scoped declarations. This hoists functions to the top level if no
lexical declaration name overlaps. Furthermore we do checking of
redeclarations in the ScopePusher now requiring less checks all over
the place.
- Add methods for parsing the directives and statement lists instead
of having that code duplicated in multiple places. This allows
declarations to pushed to the appropriate scope more easily.
- Remove the non spec way of storing 'variables' in
DeclarativeEnvironment and make Reference follow the spec instead of
checking both the bindings and 'variables'.
- Remove all scoping related things from the Interpreter. And instead
use environments as specified by the spec. This also includes fixing
that NativeFunctions did not produce a valid FunctionEnvironment
which could cause issues with callbacks and eval. All
FunctionObjects now have a valid NewFunctionEnvironment
implementation.
- Remove execute_statements from Interpreter and instead use
ASTNode::execute everywhere this simplifies AST.cpp as you no longer
need to worry about which method to call.
- Make ScopeNodes setup their own environment. This uses four
different methods specified by the spec
{Block, Function, Eval, Global}DeclarationInstantiation with the
annexB extensions.
- Implement and use NamedEvaluation where specified.
Additionally there are fixes to things exposed by these changes to eval,
{for, for-in, for-of} loops and assignment.
Finally it also fixes some tests in test-js which where passing before
but not now that we have correct behavior :^).
There's currently a fallback at the call site where the Realm is needed
(due to a slightly incorrect implementation of [[Call]] / [[Construct]])
so this is better than crashing (in LibWeb, currently).
This makes the implicit run-time assertion in PropertyName::to_string()
into an explicit compile-time requirement, removes a wasteful FlyString
-> PropertyName -> FlyString construction from NativeFunction::create()
and allows setting the function name to a null string for anonymous
native functions.
This patch adds FunctionEnvironmentRecord as a subclass of the existing
DeclarativeEnvironmentRecord. Things that are specific to function
environment records move into there, simplifying the base.
Most of the abstract operations related to function environment records
are rewritten to match the spec exactly. I also had to implement
GetThisEnvironment() and GetSuperConstructor() to keep tests working
after the changes, so that's nice as well. :^)
This patch makes the following name changes:
- ScopeObject => EnvironmentRecord
- LexicalEnvironment => DeclarativeEnvironmentRecord
- WithScope => ObjectEnvironmentRecord
We were doing a *lot* of string-to-int conversion while creating a new
global object. This happened because Object::put() would try to convert
the property name (string) to an integer to see if it refers to an
indexed property.
Sidestep this issue by using PropertyName for the CommonPropertyNames
struct on VM (vm.names.foo), and giving PropertyName a flag that tells
us whether it's a string that *may be* a number.
All CommonPropertyNames are set up so they are known to not be numbers.
This was creating a ton of pointless busywork for the garbage collector
and can be avoided simply by tolerating that the current call frame has
a null scope object for the duration of a NativeFunction activation.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *