The old name is the result of the perhaps somewhat confusingly named
abstract operation OrdinaryFunctionCreate(), which creates an "ordinary
object" (https://tc39.es/ecma262/#ordinary-object) in contrast to an
"exotic object" (https://tc39.es/ecma262/#exotic-object).
However, the term "Ordinary Function" is not used anywhere in the spec,
instead the created object is referred to as an "ECMAScript Function
Object" (https://tc39.es/ecma262/#sec-ecmascript-function-objects), so
let's call it that.
The "ordinary" vs. "exotic" distinction is important because there are
also "Built-in Function Objects", which can be either implemented as
ordinary ECMAScript function objects, or as exotic objects (our
NativeFunction).
More work needs to be done to move a lot of infrastructure to
ECMAScriptFunctionObject in order to make FunctionObject nothing more
than an interface for objects that implement [[Call]] and optionally
[[Construct]].
- Replace the misleading abuse of the m_transitions_enabled flag for the
fast path without lookup with a new m_initialized boolean that's set
either by Heap::allocate() after calling the Object's initialize(), or
by the GlobalObject in its special initialize_global_object(). This
makes it work regardless of the shape's uniqueness.
- When we're adding a new property past the initialization phase,
there's no need to do a second metadata lookup to retrieve the storage
value offset - it's known to always be the shape's property count
minus one. Also, instead of doing manual storage resizing and
assignment via indexing, just use Vector::append().
- When we didn't add a new property but are overwriting an existing one,
the property count and therefore storage value offset doesn't change,
so we don't have to retrieve it either.
As a result, Object::set_shape() is now solely responsible for updating
the m_shape pointer and is not resizing storage anymore, so I moved it
into the header.
This is a tiny difference and only changes anything for primitives in
strict mode. However this is tested in test262 and can be noticed by
overriding toString of primitive values.
This does now require one to wrap an object in a Value to call invoke
but all code using invoke has been migrated.
These were an ad-hoc way to implement special behaviour when reading or
writing to specific object properties. Because these were effectively
replaced by the abillity to override the internal methods of Object,
they are no longer needed.
It's way too easy to get this wrong: for the IsArray abstract operation,
Value::is_array() needs to be called. Since we have RTTI, the virtual
Object::is_array() method is not needed anymore - if we need to know
whether something is *actually* a JS::Array (we currently check in more
cases than we should, I think) and not a Proxy with an Array target, we
should do that in a way that doesn't look like an abstract operation.
This removes all usages of the non-standard put helper method and
replaces all of it's usages with the specification required alternative
or with define_direct_property where appropriate.
These are usually incorrect, and people sometimes forget to add the
correct values as a result of them being optional, so they should just
be specified explicitly.
This removes all usages of the non-standard define_property helper
method and replaces all it's usages with the specification required
alternative or with define_direct_property where appropriate.
- Fix evaluation order: IsArray(O) should always be called and before
Get(O, @@toStringTag), previously it was the other way around and
IsArray would only be called if @@toStringTag is not a string
- Add missing exception checks to both function calls
- Add missing builtin tag for arguments object
Also, while we're here:
- Update variable names to match spec
- Add spec step comments
To make this happen, this patch implements the SetImmutablePrototype
abstract operation (as a method on Object) and then overrides
[[SetPrototypeOf]] on ObjectPrototype.
This is a huge patch, I know. In hindsight this perhaps could've been
done slightly more incremental, but I started and then fixed everything
until it worked, and here we are. I tried splitting of some completely
unrelated changes into separate commits, however. Anyway.
This is a rewrite of most of Object, and by extension large parts of
Array, Proxy, Reflect, String, TypedArray, and some other things.
What we already had worked fine for about 90% of things, but getting the
last 10% right proved to be increasingly difficult with the current code
that sort of grew organically and is only very loosely based on the
spec - this became especially obvious when we started fixing a large
number of test262 failures.
Key changes include:
- 1:1 matching function names and parameters of all object-related
functions, to avoid ambiguity. Previously we had things like put(),
which the spec doesn't have - as a result it wasn't always clear which
need to be used.
- Better separation between object abstract operations and internal
methods - the former are always the same, the latter can be overridden
(and are therefore virtual). The internal methods (i.e. [[Foo]] in the
spec) are now prefixed with 'internal_' for clarity - again, it was
previously not always clear which AO a certain method represents,
get() could've been both Get and [[Get]] (I don't know which one it
was closer to right now).
Note that some of the old names have been kept until all code relying
on them is updated, but they are now simple wrappers around the
closest matching standard abstract operation.
- Simplifications of the storage layer: functions that write values to
storage are now prefixed with 'storage_' to make their purpose clear,
and as they are not part of the spec they should not contain any steps
specified by it. Much functionality is now covered by the layers above
it and was removed (e.g. handling of accessors, attribute checks).
- PropertyAttributes has been greatly simplified, and is being replaced
by PropertyDescriptor - a concept similar to the current
implementation, but more aligned with the actual spec. See the commit
message of the previous commit where it was introduced for details.
- As a bonus, and since I had to look at the spec a whole lot anyway, I
introduced more inline comments with the exact steps from the spec -
this makes it super easy to verify correctness.
- East-const all the things.
As a result of all of this, things are much more correct but a bit
slower now. Retaining speed wasn't a consideration at all, I have done
no profiling of the new code - there might be low hanging fruits, which
we can then harvest separately.
Special thanks to Idan for helping me with this by tracking down bugs,
updating everything outside of LibJS to work with these changes (LibWeb,
Spreadsheet, HackStudio), as well as providing countless patches to fix
regressions I introduced - there still are very few (we got it down to
5), but we also get many new passing test262 tests in return. :^)
Co-authored-by: Idan Horowitz <idan.horowitz@gmail.com>
This patch adds a new ArgumentsObject class to represent what the spec
calls "Arguments Exotic Objects"
These are constructed by the new CreateMappedArgumentsObject when the
`arguments` identifier is resolved in a callee context.
The implementation is incomplete and doesn't yet support mapping of
the parameter variables to the indexed properties of `arguments`.
Previously, EnvironmentRecord was a JS::Object. This was done because
GlobalObject inherited from EnvironmentRecord. Now that this is no
longer the case, we can simplify things by making EnvironmentRecord
inherit from Cell directly.
This also removes the need for environment records to have a shape,
which was awkward. This will be removed in the following patch.
Our environment records are currently weird in that they inherit from
Object, but don't have a connection to the global object.
I'd like to remove this inheritance, and the first step is giving them
their own pointer to the global object.
These represent the outermost scope in the environment record
hierarchy. The spec says they should be a "composite" of two things:
- An ObjectEnvironmentRecord wrapping the global object
- A DeclarativeEnvironmentRecord for other declarations
It's not yet clear to me how this should work, so this patch only
implements the first part, an object record wrapping the global object.
This patch adds FunctionEnvironmentRecord as a subclass of the existing
DeclarativeEnvironmentRecord. Things that are specific to function
environment records move into there, simplifying the base.
Most of the abstract operations related to function environment records
are rewritten to match the spec exactly. I also had to implement
GetThisEnvironment() and GetSuperConstructor() to keep tests working
after the changes, so that's nice as well. :^)
This patch makes the following name changes:
- ScopeObject => EnvironmentRecord
- LexicalEnvironment => DeclarativeEnvironmentRecord
- WithScope => ObjectEnvironmentRecord
This now matches the spec's OrdinaryObjectCreate() across the board:
instead of implicitly setting the created object's prototype to
%Object.prototype% and then in many cases setting it to a nullptr right
away, it now has an 'Object* prototype' parameter with _no default
value_. This makes the code easier to compare with the spec, very clear
in terms of what prototype is being used as well as avoiding unnecessary
shape transitions.
Also fixes a couple of cases were we weren't setting the correct
prototype.
There's no reason to assume that the object would not be empty (as in
having own properties), so let's follow our existing pattern of
Type::create(...) and simply call it 'create'.
We were doing a *lot* of string-to-int conversion while creating a new
global object. This happened because Object::put() would try to convert
the property name (string) to an integer to see if it refers to an
indexed property.
Sidestep this issue by using PropertyName for the CommonPropertyNames
struct on VM (vm.names.foo), and giving PropertyName a flag that tells
us whether it's a string that *may be* a number.
All CommonPropertyNames are set up so they are known to not be numbers.
This is very similar to Object::define_native_property, but here the
native functions are exported as standalone JS getter and setter
functions, instead of being transparently called by interactions with
the property.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Similar to Value::to_string_without_side_effects() this is mostly a
regular object property lookup, but with the guarantee that it will be
side-effect free, i.e. no accessors or native property functions will
be called. This is needed when we want to access user-controlled object
properties for debug logging, for example. The specific use case will be
error objects which will soon no longer have internal name/message
properties, so we need to guarantee that printing an error, which may
already be the result of an exception, won't blow up in our face :^)