The `text-shadow` property is almost identical to `box-shadow`:
> Values are interpreted as for box-shadow [CSS-BACKGROUNDS-3].
> (But note that the inset keyword are not allowed.)
So, let's use the same data structures and parsing code for both. :^)
This patch adds support for "crisp-edges", "high-quality" and "smooth"
for the CSS image-rendering property.
"crisp-edges" maps to nearest-neighbor scaling for <canvas> and <img>
elements, while "high-quality" and "smooth" both use bilinear blending.
After style computation, every StyleProperties has a value for every
PropertyID. Given this, it's simpler, faster and less memory-heavy to
use an Array instead of a HashMap. :^)
We also pass whether the shadow goes inside or outside the element. Only
outer shadows are rendered currently, and inner ones may want to be
handled separately from them, as they will never interfere with each
other.
Most of the time, we cannot resolve a `calc()` expression until we go to
use it. Since any `<length-percentage>` can legally be a `calc
()`, let's store it in `LengthPercentage` rather than make every single
user care about this distinction.
A lot of this is quite ugly, but it should only be so until I remove
Length::Type::Percentage entirely. (Which should happen later in this
PR, otherwise, yell at me!) For now, a lot of things have to be
resolved twice, first from a LengthPercentage to a Length, and then
from a Length to a pixel one.
The flexbox logic confuses me so regressions are possible, though our
test page looks the same as before so it should be fine.
Renamed FlexBasis::Length -> LengthPercentage too, for clarity.
This does undo the changes in 88c32836d8,
which accounted for our bitmap fonts being a different size than the
`font-size` property requests. I think this would be better handled
inside Length::to_px(), which would then apply to all font-size-relative
lengths (eg, em and rem) instead of only for the line-height property.
...as opposed to storing StyleValues, which we have to later check are
IdentifierStyleValues, which store identifiers that we can convert to
Repeat values later. It's fewer allocations, and we can't end up with
invalid values by mistake. :^)
While right now this doesn't save much complexity, it will do once we
care about multiple background layers per node. Then, having a single
repeat value per layer will simplify things.
It also means we can remove the pseudo-property concept entirely! :^)
When using bitmap fonts, the computed *font* that we're using may be
smaller than the font-size property asked for. We can still honor the
font-size value in layout calculations.
There's a subtle difference here. A "block box" in the spec is a
block-level box, while a "block container" is a box whose children are
either all inline-level boxes in an IFC, or all block-level boxes
participating in a BFC.
Notably, an "inline-block" box is a "block container" but not a "block
box" since it is itself inline-level.
Until now, we've internally thought of the CSS "display" property as a
single-value property. In practice, "display" is a much more complex
property that comes in a number of configurations.
The most interesting one is the two-part format that describes the
outside and inside behavior of a box. Switching our own internal
representation towards this model will allow for much cleaner
abstractions around layout and the various formatting contexts.
Note that we don't *parse* two-part "display" yet, this is only about
changing the internal representation of the property.
Spec: https://drafts.csswg.org/css-display
Once we've performed the cascade on a set of values for an element,
we should have enough information to resolve/absolutize some lengths.
Basically, any CSS length that isn't "auto" or a percentage can be
turned into an absolute length (in pixels) as long as we have the
following information:
- The viewport rect
- The parent element's font
- The document element's font
- The element's own font
To ensure that we can absolutize lengths relative to the element's own
font, we now do a separate first pass where font-related properties are
defaulted (in the cascade spec sense of the word) and become usable.
There's a lot more work to do here, but this should open up a lot of
simplification in layout code, since it will no longer need to care
about relative lengths. Layout still needs to resolve percentages, since
we can't do that for some properties until the containing block
dimensions are known.
This replaces a bunch of casts with `.as_foo()` calls, and adjusts calls
to the old `is_foo()` methods that now are better as `has_foo()`.
Also tidied up some whitespace to be more consistent.
This does a few things, that are hard to separate. For a while now, it's
been confuzing what `StyleValue::is_foo()` actually means. It sometimes
was used to check the type, and sometimes to see if it could return a
certain value type. The new naming scheme is:
- `is_length()` - is it a LengthStyleValue?
- `as_length()` - casts it to LengthStyleValue
- `has_length()` - can it return a Length?
- `to_length()` - gets the internal value out (eg, Length)
This also means, no more `static_cast<LengthStyleValue const&>(*this)`
stuff when dealing with StyleValues. :^)
Hopefully this will be a bit clearer going forward. There are lots of
places using the original methods, so I'll be going through them to
hopefully catch any issues.