This works by adding source start/end offset to every bytecode
instruction. In the future we can make this more efficient by keeping
a map of bytecode ranges to source ranges in the Executable instead,
but let's just get traces working first.
Co-Authored-By: Andrew Kaster <akaster@serenityos.org>
Because "this" value cannot be changed during function execution it is
safe to compute it once and then use for future access.
This optimization makes ai-astar.js run 8% faster.
This fixes an issue where returning inside a `try` block and then
calling a function inside `finally` would clobber the saved return
value from the `try` block.
Note that we didn't need to change the base of register allocation,
since it was already 1 too high.
With this fixed, https://microsoft.com/edge loads in bytecode mode. :^)
Thanks to Luke for reducing the issue!
These passes have not been shown to actually optimize any JS, and tests
have become very flaky with optimizations enabled. Until some measurable
benefit is shown, remove the optimization passes to reduce overhead of
maintaining bytecode operations and to reduce CI churn. The framework
for optimizations will live on in git history, and can be restored once
proven useful.
The instructions GetById and GetByIdWithThis now remember the last-seen
Shape, and if we see the same object again, we reuse the property offset
from last time without doing a new lookup.
This allows us to use Object::get_direct(), bypassing the entire lookup
machinery and saving lots of time.
~23% speed-up on Kraken/ai-astar.js :^)
The var environments will unwind as needed with the ExecutionContext
and there's no need to include it in the unwind info.
We still need to do this for lexical environments though, since they
can have short local lifetimes inside a function.
Since the relationship between VM and Bytecode::Interpreter is now
clear, we can have VM ask the Interpreter for roots in the GC marking
pass. This avoids having to register and unregister handles and
MarkedVectors over and over.
Since GeneratorObject can also own a RegisterWindow, we share the code
in a RegisterWindow::visit_edges() helper.
~4% speed-up on Kraken/stanford-crypto-ccm.js :^)
While this would be useful in the future for implementing a multi-tiered
optimization strategy, currently a binary on/off is enough for us. This
removes the confusingly on-by-default `OptimizationLevel::None` option
which made the optimization pipeline a no-op even if
`Bytecode::Interpreter::set_optimizations_enabled` had been called.
Fixes#15982
The JS::VM now owns the one Bytecode::Interpreter. We no longer have
multiple bytecode interpreters, and there is no concept of a "current"
bytecode interpreter.
If you ask for VM::bytecode_interpreter_if_exists(), it will return null
if we're not running the program in "bytecode enabled" mode.
If you ask for VM::bytecode_interpreter(), it will return a bytecode
interpreter in all modes. This is used for situations where even the AST
interpreter switches to bytecode mode (generators, etc.)
Don't try to implement this AO in bytecode. Instead, the bytecode
Interpreter class now has a run() API with the same inputs as the AST
interpreter. It sets up the necessary environments etc, including
invoking the GlobalDeclarationInstantiation AO.
We use generators in bytecode to approximate async functions, but the
code generated by AwaitExpressions did not have the value processing
paths that Yield requires, eg the `generator.throw()` path, which is
used by AsyncFunctionDriverWrapper to signal Promise rejections.
This uses a newly added instruction `ScheduleJump`
This instruction tells the finally proceeding it, that instead of
jumping to it's next block it should jump to the designated block.
This is still not perfect, as we now actually crash in the
`try-finally-continue` tests, while we now succeed all
`try-catch-finally-*` tests.
Note that we do not yet go through the finally block when exiting the
unwind context through a break or continue.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Unwind contexts need to be preserved as we exit and re-enter a
generator.
For example, this would previously crash when returning from the try
statement after yielding as we lost the unwind context when yielding,
but still have a LeaveUnwindContext instruction from running
`perform_needed_unwinds` when generating the return statement.
```js
function* a() {
try {
return (yield 1);
} catch {}
}
iter = a();
iter.next();
iter.next();
```
The optimization passes are not stable, which makes test262 flaky.
Address this by introducing a new OptimizationLevel::None and making it
the default.
This removes all the flakiness from test262 in my testing.
We can enable optimizations by default again once they have been made
stable. :^)
The basic idea is that a global object cannot just come out of nowhere,
it must be associated to a realm - so get it from there, if needed.
This is to enforce the changes from all the previous commits by not
handing out global objects unless you actually have an initialized
realm (either stored somewhere, or the VM's current realm).
Now we emit CreateVariable and SetVariable with the appropriate
initialization/environment modes, much closer to the spec.
This makes a whole lot of things like let/const variables, function
and variable hoisting and some other things work :^)
And use it to _correctly_ implement state saving for generators.
Prior to this, we were capturing the caller frame, which is completely
irrelevant to the generator frame.
This commit adds a bunch of passes, the most interesting of which is a
pass that merges blocks together, and a pass that places blocks that
flow into each other next to each other, and a very simply pass that
removes duplicate basic blocks.
Note that this does not remove the jump at the end of each block in that
pass to avoid scope creep in the passes.
EnterUnwindContext pushes an unwind context (exception handler and/or
finalizer) onto a stack.
LeaveUnwindContext pops the unwind context from that stack.
Upon return to the interpreter loop we check whether the VM has an
exception pending. If no unwind context is available we return from the
loop. If an exception handler is available we clear the VM's exception,
put the exception value into the accumulator register, clear the unwind
context's handler and jump to the handler. If no handler is available
but a finalizer is available we save the exception value + metadata (for
later use by ContinuePendingUnwind), clear the VM's exception, pop the
unwind context and jump to the finalizer.
ContinuePendingUnwind checks whether a saved exception is available. If
no saved exception is available it jumps to the resume label. Otherwise
it stores the exception into the VM.
The Jump after LeaveUnwindContext could be integrated into the
LeaveUnwindContext instruction. I've kept them separate for now to make
the bytecode more readable.
> try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4
1:
[ 0] EnterScope
[ 10] EnterUnwindContext handler:@4 finalizer:@3
[ 38] EnterScope
[ 48] LoadImmediate 1
[ 60] NewString 1 ("x")
[ 70] Throw
<for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here>
2:
[ 0] LoadImmediate 4
3:
[ 0] EnterScope
[ 10] LoadImmediate 3
[ 28] ContinuePendingUnwind resume:@2
4:
[ 0] SetVariable 0 (e)
[ 10] EnterScope
[ 20] LoadImmediate 2
[ 38] LeaveUnwindContext
[ 3c] Jump @3
String Table:
0: e
1: x
Instead of using Strings in the bytecode ops this adds a global string
table to the Executable struct which individual operations can refer
to using indices. This brings bytecode ops one step closer to being
pointer free.
This limits the size of each block (currently set to 1K), and gets us
closer to a canonical, more easily analysable bytecode format.
As a result of this, "Labels" are now simply entries to basic blocks.
Since there is no more 'conditional' jump (as all jumps are always
taken), JumpIf{True,False} are unified to JumpConditional, and
JumpIfNullish is renamed to JumpNullish.
Also fixes#7914 as a result of reimplementing the loop logic.
This commit introduces the concept of an accumulator register to
LibJS's bytecode interpreter. The accumulator register is always
register 0, and most simple instructions use it for reading and
writing.
Not only does this slim down the AST, but it also simplifies a lot of
the code. For example, the generate_bytecode methods no longer need
to return an Optional<Register>, as any opcode which has a "return"
value will always put it into the accumulator.
This also renames the old Op::Load to Op::LoadImmediate, and uses
Op::Load to load from a register into the accumulator. There is
also an Op::Store to put the value in the accumulator into another
register.
If there's a current Bytecode::Interpreter in action, ScriptFunction
will now compile itself into bytecode and execute in that context.
This patch also adds the Return bytecode instruction so that we can
actually return values from called functions. :^)
Return values are propagated from callee to caller via the caller's
$0 register. Bytecode::Interpreter now keeps a stack of register
"windows". These are not very efficient, but it should be pretty
straightforward to convert them to e.g a sliding register window
architecture later on.
This is pretty dang cool! :^)
This introduces two new instructions: Jump and JumpIfFalse.
Jumps are made to a Bytecode::Label, which is a simple object that
represents a location in the bytecode stream.
Note that you may not always know the target of a jump when adding the
jump instruction itself, but we can just update the instruction later
on during codegen once we know where the jump target is.
The Bytecode::Interpreter now implements jumping via a jump slot that
gets checked after each instruction to see if a jump is pending.
If not, we just increment the PC as usual.