Similar to POSIX read, the basic read and write functions of AK::Stream
do not have a lower limit of how much data they read or write (apart
from "none at all").
Rename the functions to "read some [data]" and "write some [data]" (with
"data" being omitted, since everything here is reading and writing data)
to make them sufficiently distinct from the functions that ensure to
use the entire buffer (which should be the go-to function for most
usages).
No functional changes, just a lot of new FIXMEs.
We don't need to decode the entire code point to know its length. This
reduces the runtime of decoding a string containing 5 million instances
of U+10FFFF from over 4 seconds to 0.9 seconds.
Before, some loader plugins implemented their own buffering (FLAC&MP3),
some didn't require any (WAV), and some didn't buffer at all (QOA). This
meant that in practice, while you could load arbitrary amounts of
samples from some loader plugins, you couldn't do that with some others.
Also, it was ill-defined how many samples you would actually get back
from a get_more_samples call.
This commit fixes that by introducing a layer of abstraction between the
loader and its plugins (because that's the whole point of having the
extra class!). The plugins now only implement a load_chunks() function,
which is much simpler to implement and allows plugins to play fast and
loose with what they actually return. Basically, they can return many
chunks of samples, where one chunk is simply a convenient block of
samples to load. In fact, some loaders such as FLAC and QOA have
separate internal functions for loading exactly one chunk. The loaders
*should* load as many chunks as necessary for the sample count to be
reached or surpassed (the latter simplifies loading loops in the
implementations, since you don't need to know how large your next chunk
is going to be; a problem for e.g. FLAC). If a plugin has no problems
returning data of arbitrary size (currently WAV), it can return a single
chunk that exactly (or roughly) matches the requested sample count. If a
plugin is at the stream end, it can also return less samples than was
requested! The loader can handle all of these cases and may call into
load_chunk multiple times. If the plugin returns an empty chunk list (or
only empty chunks; again, they can play fast and loose), the loader
takes that as a stream end signal. Otherwise, the loader will always
return exactly as many samples as the user requested. Buffering is
handled by the loader, allowing any underlying plugin to deal with any
weird sample count requirement the user throws at it (looking at you,
SoundPlayer!).
This (not accidentally!) makes QOA work in SoundPlayer.
With the new canceled background actions, some thumbnail generation
callbacks are not executed if the user closes the window with a
FileSystemModel quickly enough. Therefore, we remember which thumbnails
we started to generate and consider the associated promises if we're
looking up a thumbnail. Since the thumbnail generation itself continues
running and the cache is application-global, instead of never displaying
thumbnails for images that were "interrupted" generating thumbnails the
first time, we can now fetch their images immediately and reliably.
BackgroundActions are now added as a job to the event loop, therefore
they get canceled when the loop exits and their on_complete action never
runs. This fixes all UAF bugs related to BackgroundAction's use of
EventLoops, as seen with e.g. thumbnail generation.
In this context, the promises are considered "jobs", and such jobs
depend in some way on the event loop. Therefore, they can be added to
the event loop, and the event loop will cancel all of its pending jobs
when it ends.
The UTF-8 encoding of U+00A0 (NBSP) is the bytes 0xc2 0xa0. By looping
over the string to escape byte-by-byte, we replace the second byte with
" ", but leave the first byte in the resulting text. This creates
an invalid UTF-8 string, with a lone leading byte.
Normally this is supposed to be installed from gdb or gcc. If a port
wants to link against libbfd though, we need to make sure libiberty is
actually available in the root filesytem without requiring the port to
depend on those larger packages.
Any userspace cpp file that included <syscall.h> would end up with
a large glob of Kernel headers included, all the way down to
Kernel/Arch/x86_64/CPU.h and friends.
Only the kernel needs RegisterState, so hide it from userspace.
headless-browser currently uses its own PageClient to load web pages
in-process. Due to this, it also needs to set up a whole bunch of other
objects needed to run LibWeb, e.g. image decoders, request servers, etc.
This changes headless-browser to instead implement a WebView to launch
WebContent out-of-process. This implementation is almost entirely empty,
but can be filled in as-needed. For example, we may want to print
JavaScript console messages.
by making them `monospace` in the Help page, and bold in the manual.
This helps to quickly find out where the keyboard controls are in the
manual when skimming its contents.
This is how the menu looks like after this commit:
┌────┐
│Game│ Help
├────┴─────────────────────────────┐
│ New game F2 │
│ Toggle pause P │
├──────────────────────────────────┤
│ Quit Alt+F4 │
└──────────────────────────────────┘
Allows for pausing with either the `P` or `Escape` keys. In this commit
you can still rotate pieces when paused - which makes for an interesting
"stop-time" cheat mechanic, but probably isn't yet what we want.