This is a bit spammy now that we are performing some overload resolution
at build time. The fallback to an interface has generally worked fine on
the types it warns about (BufferSource, Module, etc.) so let's not warn
about it for every build.
Let's replace this bool with an `enum class` in order to enhance
readability. This is done by repurposing `MappedFile`'s `OpenMode` into
a shared `enum` simply called `Mode`.
Previously, `URLParser` was constructing a new String for every
character of the URL's username and password. This change improves
performance by eliminating those unnecessary String allocations.
A URL with a 100,000 character password can now be parsed in ~30ms vs
~8 seconds previously on my machine.
I added some spec comments, and implementation notices, this should not
change behavior in a significant way.
The previous code was quite unwieldy and repetitive.
The long `if(next_is('X'))` chain is now a smaller `switch`.
I also reinstated the fast path for long sequences of literal
characters, which was broken in 0aad21fff2
Consider the following:
JsonValue value { JsonValue::Type::Object };
value.as_object().set("foo"sv, "bar"sv);
The JsonValue(Type) constructor does not initialize the underlying union
that stores its value. Thus JsonValue::as_object() will A) refer to an
uninitialized union member, B) deference that member.
This constructor only has 2 users, both of which initialize the type to
Type::Null. Rather than implementing unused functionality here, replace
those uses with the default JsonValue constructor, and remove the faulty
constructor.
The fun pattern of `union { struct { u32 a : 1; u64 b : 7; }; u8 x; }`
produces complete garbage on windows, this commit fixes the two
instances of those that exist in AK.
This commit also makes sure that the generated unions have the correct
size (whereas FloatExtractor<f32> previously did not!) by adding some
nice static_asserts.
Previously we assumed a default precision of 6, which made the printed
values quite odd in some cases.
This commit changes that default to print them with just enough
precision to produce the exact same float when roundtripped.
This commit adds some new tests that assert exact format outputs, which
have to be modified if we decide to change the default behaviour.
The slugify function is used to convert input into URL-friendly slugs.
It processes each character in the input, keeping ascii alpha characters
after lowercase and replacing non-alphanum characters with the glue
character or a space if multiple spaces are encountered consecutively.
The resulting string is trimmed of leading and trailing whitespace, and
any internal whitespace is replaced with the glue character.
It is currently used in LibMarkdown headings generation code.
The backtrace execinfo API takes the number of addresses the result
buffer can hold instead of its size, for some reason. Previously
backtraces larger than 256 frames deep would write past the end of the
result buffer.
Instead of implementing this inline, put it into a function. Use this
new function to correctly implement shortening paths for some places
where this logic was previously missing.
Before these changes, the pathname for the included test was incorrectly
being set to '/' as we were not considering the windows drive letter.
Fixed the issue in StringUtils::convert_to_floating_point() where the
end pointer of the trimmed string was not being passed, causing the
function to consistently return 'None' when given strings with trailing
whitespaces.
There were 2 issues with the way we formatted floating point decimals:
if the part after the decimal point exceeded the max of an u64 we would
generate wildly incorrect decimals, and we applied no rounding.
With this new code, we emit decimals one by one and perform a simple
reverse string walk to round the number up if required.
Prior to this commit, constructing a DS from a null DFS would cause a
nullptr deref, which broke (at least) Profiler.
This commit converts the null DFS to an empty DS, avoiding the nullptr
deref (until DFS loses its null state, or we decide to not make it
convertible to a DS).
This commit removes DeprecatedString's "null" state, and replaces all
its users with one of the following:
- A normal, empty DeprecatedString
- Optional<DeprecatedString>
Note that null states of DeprecatedFlyString/StringView/etc are *not*
affected by this commit. However, DeprecatedString::empty() is now
considered equal to a null StringView.
This function was an artifact from when we were using DeprecatedString
much more in URL class before porting to Optional<String>, where we no
longer rely on the null state of DeprecatedString.
The original doc comment was mistakenly copy-pasted from
count_leading_zeroes_safe, and incorrect. The function is doing
something else: it's counting _trailing_ zeroes instead of _leading_
ones.
The mentioned functions used m_size / 8 instead of size_in_bytes()
(division with ceiling rounding mode), which resulted in an off-by-one
error such that the functions didn't search in the last not-fully-8-bits
byte.
Using size_in_bytes() instead of m_size / 8 fixes this.
When working with FixedMemoryStreams, and especially MappedFiles, you
may don't want to copy the underlying data when you read from the
stream. Pointing into that data is perfectly fine as long as you know
the lifetime of it is long enough.
This commit adds a couple of methods for reading either a single value,
or a span of them, in this way. As noted, for single values you sadly
get a raw pointer instead of a reference, but that's the only option
right now.
Previously, the first match index was not checked to see if the camel
case or separator bonuses applied. The camel case bonus could also be
incorrectly applied where strings had non-alphabetical characters.
SipHash is highly HashDoS-resistent, initialized with a random seed at
startup (i.e. non-deterministic) and usable for security-critical use
cases with large enough parameters. We just use it because it's
reasonably secure with parameters 1-3 while having excellent properties
and not being significantly slower than before.
Instead of ballooning the size of the Function object, simply place the
callable on the heap with a properly aligned address.
This brings the alignment of Function down from ridiculous sizes like 64
bytes down to a manageable 8 bytes.
…kernel"
This reverts commit d4d92184b3.
The alignemnt requirements imposed by this are overkill at best and
ridiculous at worst, a future commit will tackle this problem in a
different, more space-efficient way.
This commit also reverts db5ad0c since code outside of the web spec
expects serialized paths to be percent decoded.
Also, there are issues trying to implement the concept "opaque
path". For now, we still use the old cannot_be_a_base_url(), but its
usage needs to be removed in favor of a has_opaque_path() as the spec
has changed since then.
...requested size"
This reverts commit 13573a6c4b.
Some clients of `BufferedStream` expect a non-blocking read by
`read_some` which the commit above made impossible by potentially
performing a blocking read. For example, the following command hangs:
pro http://ipecho.net/plain
This is caused by the HTTP job expecting to read the body of the
response which is included in the active buffer, but since the buffered
data size is less than the buffer passed into `read_some`, another
blocking read is performed before anything is returned.
By reverting this commit, all tests still pass and `pro` no longer
hangs. Note that because of another bug related to `stdout` / `stderr`
mixing and the absence of a line ending, there is no output to the
command above except a progress update.
This is defined when building on GNU/Hurd, the GNU operating system with
the Hurd as its kernel (as it was designed originally, before Linux and
GNU/Linux came to be).
Also, define the corresponding part of User-Agent.
This is defined when we're compiling against the GNU C Library, whether
on Linux or on other kernels that glibc works on. More AK_LIBC_xxxx
definitions could be potentially added in the future.
Also add AK_LIBC_GLIBC_PREREQ(), which checks for a specific glibc
version.
While macOS backtrace(3) puts a space directly after the mangled symbol
name, some versions of glibc put a + directly after it. This new logic
accounts for both situations when trying to demangle.
Co-Authored-By: Andreas Kling <kling@serenityos.org>
On platforms that support it, enable using ``<execinfo.h>`` to get
backtrace(3) to dump a backtrace on assertion failure. This should make
debugging things like WebContent crashes in Lagom much easier.
This part of the spec is mostly useful for our debugging for now, but
could eventually be hooked up so that the user can see any reported
validation errors.
The main change here is that we now follow the spec by asserting the URL
is not special. Previously I could not find a way to enable this without
getting assertions when browsing the web - but that seems to no longer
be the case (probably from some other fixes which have since been made).
The main change is the simplification of the expression
`(10^precision * fraction) / 2^precision` to `5^precision * fraction`.
Those expressions overflow or not depends on the value of `precision`
and `fraction`. For the maximum value of `fraction`, the following table
shows for which value of `precision` overflow will occur.
Old New
u32 08 10
u64 15 20
u128 30 39
As of now `u64` type is used to calculate the result of the expression.
Meaning that before, only FixedPoints with `precision` less than 15
could be accurately rendered (for every value of fraction) in decimal.
Now, this limit gets increased to 20.
This refactor also fixes, broken decimal render for explicitly specified
precision width in format string, and broken hexadecimal render.
By default, `1` is of the type `int` which is 32-bits wide at max.
Because of that, if `precision` of a `FixedPoint` is greater than 32,
the expression `1 << precision` will get clamped at 32-bits and the
result will always be zero. Casting `1` to the wider underlying type
will make the expression not overflow.
Because of the off-by-one error, the second bit of the fraction was
getting ignored in differentiating between fractions equal to 0.5 or
greater than 0.5. This resulted in numbers like 2.75 being considered
as having fraction equal to 0.5 and getting rounded incorrectly (to 2).
This new Kernel StdLib function will be used to copy contents of a
FixedStringBuffer with a null character to a user process.
The first user of this new function is the prctl option of
PR_GET_PROCESS_NAME which would copy a process name including a null
character to a user provided buffer.
There was a small mishmash of argument order, as seen on the table:
| Traits<T>::equals(U, T) | Traits<T>::equals(T, U)
============= | ======================= | =======================
uses equals() | HashMap | Vector, HashTable
defines equals() | *String[^1] | ByteBuffer
[^1]: String, DeprecatedString, their Fly-type equivalents and KString.
This mostly meant that you couldn't use a StringView for finding a value
in Vector<String>.
I'm changing the order of arguments to make the trait type itself first
(`Traits<T>::equals(T, U)`), as I think it's more expected and makes us
more consistent with the rest of the functions that put the stored type
first (like StringUtils functions and binary_serach). I've also renamed
the variable name "other" in find functions to "entry" to give more
importance to the value.
With this change, each of the following lines will now compile
successfully:
Vector<String>().contains_slow("WHF!"sv);
HashTable<String>().contains("WHF!"sv);
HashMap<ByteBuffer, int>().contains("WHF!"sv.bytes());
The proper syntax for defining user-defined literals does not require a
space between the `operator""` token and the operator name:
> error: identifier 'sv' preceded by whitespace in a literal operator
> declaration is deprecated
This change introduces HeapFunction, which is intended to be used as a
replacement for SafeFunction. The new type behaves like a regular
GC-allocated object, which means it needs to be visited from
visit_edges, and unlike SafeFunction, it does not create new roots for
captured parameters.
Co-Authored-By: Andreas Kling <kling@serenityos.org>
IFF was a generic container fileformat that was popular on the Amiga
since it was the only file format supported by Deluxe Paint.
ILBM is an image format popular in the late eighties/nineties
that uses the IFF container.
This is a very first version of the decoder that only supports
(byterun) compressed files with bpp <= 8.
Only the minimal chunks are decoded: CMAP, BODY, BMHD.
I am planning to add support for the following variants:
- EHB (32 colours + lighter 32 colours)
- HAM6 / HAM8 (special mode that allowed to display the whole Amiga
4096 colours / 262 144 colours palette)
- TrueColor (24bit)
Things that could be fun to do:
- Still images could be animated using color cycle information
The web specs do not expect decoding or decoding to happen when calling
these helpers. This allows us to remove the raw_fragment helper function
from the URL class.
This encoder can handle all integer formats and sample rates, though
only two channels well. It uses fixed LPC and performs a
close-to-optimal parameter search on the LPC order and residual Rice
parameter, leading to decent compression already.
Just like with input buffered streams, we don't currently have a use
case for output buffered streams which aren't seekable, since the main
application are files.
To ensure this happens without duplicating code, we allow forcing a
StringBuilder object to only use the inline buffer, so the code in the
AK/Format.cpp file doesn't need to deal with different underlying
storage types (expandable or inline-fixed) at all.
I couldn't run the parser in a debugger like I normally would, so I
added printouts to understand where the parser is failing.
More could be added, but these are enough to get a good idea of what
the parser is doing. It's very spammy, though, so enable it by flicking
the IMAP_PARSER_DEBUG switch :^)
Instead, use the FixedCharBuffer class to ensure we always use a static
buffer storage for these names. This ensures that if a Process or a
Thread were created, there's a guarantee that setting a new name will
never fail, as only copying of strings should be done to that static
storage.
The limits which are set are 32 characters for processes' names and 64
characters for thread names - this is because threads' names could be
more verbose than processes' names.
This class encapsulates a fixed Array with compile-time size definition
for storing ASCII characters.
There are also new Kernel StdLib functions to copy user data into such
objects so this class will be useful later on.
The spec indicates we should support serializing opaque hosts, but we
were assuming the host contained a String. Opaque hosts are represented
with Empty. Return an empty string here instead to prevent crashing on
an invalid variant access.
Now that ""_string is infallible, the only benefit of explicitly
constructing a short string is the ability to do it at compile-time. But
we never do that, so let's simplify the API and remove this
implementation detail from it.
This could happen if a sequence of '0' parts was followed by a longer
sequence of '0' parts at the end of the host. The first sequence was
being used for the compress, and not the second.
For example, [1:1:0:0:1:0:0:0] was being serialized as: [1:1::1:0:0:0]
instead of [1:1:0:0:1::].
Fix this by checking at the end of the loop if we are in the middle of a
sequence of '0' parts that is longer than the current longest.