This made sense before we had the next step to resolve union types, but
now we only need to skip transferring the extended attributes, without
returning just yet.
Instead, create a tree of Parsers all pointing to a top-level Parser.
All module imports and interfaces are stored at the top level, instead
of in a static map. This allows creating multiple IDL::Parsers in the
same process without them stepping on each others toes.
An "inherit attribute" calls an ancestor's getter with the same name,
but defines its own setter. Since a parent class's public methods are
exposed to child classes, we don't have to do any special handling here
to call the parent's methods, it just works. :^)
Track the kind of Type it is, and use that to provide some convenient
`is_foo()` / `as_foo()` methods. While I was at it, made these all
classes instead of structs and made their data private.
IDL function overload resolution requires knowing each IDL function's
parameters and their types at runtime. The simplest way to do that is
just to make the types the generator uses available to the runtime.
Parsing has moved to LibIDL, but code generation has not, since that is
very specific to WrapperGenerator.
2022-09-17 21:27:17 +02:00
Renamed from Meta/Lagom/Tools/CodeGenerators/LibWeb/WrapperGenerator/IDLParser.cpp (Browse further)