C++20 can automatically synthesize `operator!=` from `operator==`, so
there is no point in writing such functions by hand if all they do is
call through to `operator==`.
This fixes a compile error with compilers that implement P2468 (Clang
16 currently). This paper restores the C++17 behavior that if both
`T::operator==(U)` and `T::operator!=(U)` exist, `U == T` won't be
rewritten in reverse to call `T::operator==(U)`. Removing `!=` operators
makes the rewriting possible again.
See https://reviews.llvm.org/D134529#3853062
Refactor various classes in the GridTrackSize file for the incoming
named_tracks feature.
Previously the ExplicitTrackSizing had mixed responsiblities with the
newly-named GridRepeat class. This made it so it was not possible to
have multiple repeats within a single 'GridTrackSizeList' definition.
The MetaGridTrackSize class had both the responsibilities of being a
container for minmax values as well as for simple GridSizes. By uniting
the different possible values (repeat, minmax, default) into the
ExplicitGridTrack class are able to be more expressive as to the
different grid size modalities.
The GridTrackSizeList will be useful as compared to a
Vector<ExplicitGridTrack> since this way can keep track of the declared
line names. These same line names are able to be declared within the
values of a repeat function, hence the presence of a GridTrackSizeList
inside the GridRepeat class.
Add classes ExplicitTrackSizing and MetaGridTrackSize which will allow
for managing properties like auto-fill and minmax.
In the following CSS example there are 3 classes that will be used:
grid-template-column: repeat(auto-fill, minmax(50px, 1fr) 75px);
ExplicitTrackSizing - will contain the entire value. e.g.
repeat(auto-fill, minmax(50px, 1fr) 75px)
With a flag if it's a repeat, as well as references to the
MetaGridTrackSizes which is the next step down.
MetaGridTrackSize:
Contain the individual grid track sizes. Here there are two:
minmax(50px, 1fr) as well as 75px.
This way can keep track if it's a minmax function or not, and the
references to both GridTrackSizes in the case it is, or in just the one
if it is not.
GridTrackSize:
Is the most basic element, in this case there are three in total; two of
which are held by the first MetaGridTrackSize, and the third is held by
the second MetaGridTrackSize.
Examples: 50px, 1fr and 75px.
Add functionality to begin parsing grid-template-columns and
grid-template-rows. There are still things to be added, like parsing
functions, but I would say a couple of the major points are already
adressed like length, percentage, and flexible-length.
The spec grammar for `text-decoration-line` is:
`none | [ underline || overline || line-through || blink ]`
Which means that it's either `none`, or any combination of the other
values. This patch makes that parse for `text-decoration-line` and
`text-decoration`, stores the results as a Vector, and adjusts
`paint_text_decoration()` to run as a loop over all the values that are
provided.
As noted, storing a Vector of values is a bit wasteful, as they could be
stored as flags in a single `u8`. But I was getting too confused trying
to do that in a nice way.
By the time that property() gets called, we've already given every
single property a value, so we can just return it. This simplifies a
lot of places that were manually handling a lack of value
unnecessarily.
This function was written as if it returned `Optional<CSS::BoxSizing>`
but actually returned a plain `CSS::BoxSizing`, meaning if the property
was not set or was invalid, it would return whichever enum value was
first. This wasn't visible because we don't yet pay any attention to
the `box-sizing` property.
The `text-shadow` property is almost identical to `box-shadow`:
> Values are interpreted as for box-shadow [CSS-BACKGROUNDS-3].
> (But note that the inset keyword are not allowed.)
So, let's use the same data structures and parsing code for both. :^)
After style computation, every StyleProperties has a value for every
PropertyID. Given this, it's simpler, faster and less memory-heavy to
use an Array instead of a HashMap. :^)
A lot of this is quite ugly, but it should only be so until I remove
Length::Type::Percentage entirely. (Which should happen later in this
PR, otherwise, yell at me!) For now, a lot of things have to be
resolved twice, first from a LengthPercentage to a Length, and then
from a Length to a pixel one.
While right now this doesn't save much complexity, it will do once we
care about multiple background layers per node. Then, having a single
repeat value per layer will simplify things.
It also means we can remove the pseudo-property concept entirely! :^)
Resolved style is a spec concept that refers to the weird mix of
computed style and used style reflected by getComputedStyle().
The purpose of this class is to produce the *computed* style for a given
element, so let's call it StyleComputer.
Once we've performed the cascade on a set of values for an element,
we should have enough information to resolve/absolutize some lengths.
Basically, any CSS length that isn't "auto" or a percentage can be
turned into an absolute length (in pixels) as long as we have the
following information:
- The viewport rect
- The parent element's font
- The document element's font
- The element's own font
To ensure that we can absolutize lengths relative to the element's own
font, we now do a separate first pass where font-related properties are
defaulted (in the cascade spec sense of the word) and become usable.
There's a lot more work to do here, but this should open up a lot of
simplification in layout code, since it will no longer need to care
about relative lengths. Layout still needs to resolve percentages, since
we can't do that for some properties until the containing block
dimensions are known.
The 'C' in "CSS" is for Cascade, so let's actually implement the cascade
in LibWeb. :^)
StyleResolver::resolve_style() now begins by collecting all the matching
CSS rules for the given DOM::Element. Rules are then processed in the
spec's cascade order (instead of in the order we encounter them.)
With this, "!important" is now honored on CSS properties.
After performing the cascade, we do another pass of what the spec calls
"defaulting" where we resolve "inherit" and "initial" values.
I've left a FIXME about supporting correct "initial" values for every
property, since we're currently lacking some coverage there.
Note that this mechanism now resolves every known CSS property. This is
*not* space-efficient and we'll eventually need to come up with some
strategies to reduce memory usage around this. However, this will do
fine until we have more of the engine working correctly. :^)