By replacing this VERIFY with a thrown Error we no longer crash when
calling a generator function in the AST interpreter. This allows us to
more gracefully handle situation which have not been implemented yet.
In particular this helps the libjs-test262-runner since it can now
continue on to the next tests instead of having the entire process end.
Now that only ECMAScriptFunctionObject uses this, we can remove the
FunctionObject::new_function_environment() pure virtual method and just
implement it as a standalone AO with an ECMAScriptFunctionObject
parameter, next to the other NewFooEnvironment AOs.
Now that it only needs to deal with ECMAScriptFunctionObject via
internal_call() / internal_construct(), we can:
- Remove the generic FunctionObject parameter
- Move it from the VM to ECMAScriptFunctionObject
- Make it private
Now that it only needs to deal with ECMAScriptFunctionObject via
internal_call() / internal_construct(), we can:
- Remove the generic FunctionObject parameter
- Move it from the VM to ECMAScriptFunctionObject
- Make it private
This patch implements:
- Spec compliant [[Call]] and [[Construct]] internal slots, as virtual
FunctionObject::internal_{call,construct}(). These effectively replace
the old virtual FunctionObject::{call,construct}(), but with several
advantages:
- Clear and consistent naming, following the object internal methods
- Use of completions
- internal_construct() returns an Object, and not Value! This has been
a source of confusion for a long time, since in the spec there's
always an Object returned but the Value return type in LibJS meant
that this could not be fully trusted and something could screw you
over.
- Arguments are passed explicitly in form of a MarkedValueList,
allowing manipulation (BoundFunction). We still put them on the
execution context as a lot of code depends on it (VM::arguments()),
but not from the Call() / Construct() AOs anymore, which now allows
for bypassing them and invoking [[Call]] / [[Construct]] directly.
Nothing but Call() / Construct() themselves do that at the moment,
but future additions to ECMA262 or already existing web specs might.
- Spec compliant, standalone Call() and Construct() AOs: currently the
closest we have is VM::{call,construct}(), but those try to cater to
all the different function object subclasses at once, resulting in a
horrible mess and calling AOs with functions they should never be
called with; most prominently PrepareForOrdinaryCall and
OrdinaryCallBindThis, which are only for ECMAScriptFunctionObject.
As a result this also contains an implicit optimization: we no longer
need to create a new function environment for NativeFunctions - which,
worth mentioning, is what started this whole crusade in the first place
:^)
By spec, calling an ECMAScript function object in non-strict mode should
always create a new top-level declarative environment, even if there are
no lexically scoped bindings (let/const) that belong in it. This is
used for scope disambiguation in direct eval() calls.
However, if there are no direct eval() calls within the function, and no
lexically scoped bindings, we can simply not allocate the extra
environment and save ourselves the trouble.
We now propagate this flag to FunctionDeclaration, and then also into
ECMAScriptFunctionObject.
This will be used to disable optimizations that aren't safe in the
presence of direct eval().
This gives FunctionNode a "might need arguments object" boolean flag and
sets it based on the simplest possible heuristic for this: if we
encounter an identifier called "arguments" or "eval" up to the next
(nested) function declaration or expression, we won't need an arguments
object. Otherwise, we *might* need one - the final decision is made in
the FunctionDeclarationInstantiation AO.
Now, this is obviously not perfect. Even if you avoid eval, something
like `foo.arguments` will still trigger a false positive - but it's a
start and already massively cuts down on needlessly allocated objects,
especially in real-world code that is often minified, and so a full
"arguments" identifier will be an actual arguments object more often
than not.
To illustrate the actual impact of this change, here's the number of
allocated arguments objects during a full test-js run:
Before:
- Unmapped arguments objects: 78765
- Mapped arguments objects: 2455
After:
- Unmapped arguments objects: 18
- Mapped arguments objects: 37
This results in a ~5% speedup of test-js on my Linux host machine, and
about 3.5% on i686 Serenity in QEMU (warm runs, average of 5).
The following microbenchmark (calling an empty function 1M times) runs
25% faster on Linux and 45% on Serenity:
function foo() {}
for (var i = 0; i < 1_000_000; ++i)
foo();
test262 reports no changes in either direction, apart from a speedup :^)
In ECMAScriptFunctionObject::function_declaration_instantiation() we
iterate over all lexically declared names of the function scope body to
determine whether any of them is named 'arguments', because we don't
need to create an arguments object in that case. We can also stop at
that point, because the decision won't change anymore.
Before this we used an ad-hoc combination of references and 'variables'
stored in a hashmap. This worked in most cases but is not spec like.
Additionally hoisting, dynamically naming functions and scope analysis
was not done properly.
This patch fixes all of that by:
- Implement BindingInitialization for destructuring assignment.
- Implementing a new ScopePusher which tracks the lexical and var
scoped declarations. This hoists functions to the top level if no
lexical declaration name overlaps. Furthermore we do checking of
redeclarations in the ScopePusher now requiring less checks all over
the place.
- Add methods for parsing the directives and statement lists instead
of having that code duplicated in multiple places. This allows
declarations to pushed to the appropriate scope more easily.
- Remove the non spec way of storing 'variables' in
DeclarativeEnvironment and make Reference follow the spec instead of
checking both the bindings and 'variables'.
- Remove all scoping related things from the Interpreter. And instead
use environments as specified by the spec. This also includes fixing
that NativeFunctions did not produce a valid FunctionEnvironment
which could cause issues with callbacks and eval. All
FunctionObjects now have a valid NewFunctionEnvironment
implementation.
- Remove execute_statements from Interpreter and instead use
ASTNode::execute everywhere this simplifies AST.cpp as you no longer
need to worry about which method to call.
- Make ScopeNodes setup their own environment. This uses four
different methods specified by the spec
{Block, Function, Eval, Global}DeclarationInstantiation with the
annexB extensions.
- Implement and use NamedEvaluation where specified.
Additionally there are fixes to things exposed by these changes to eval,
{for, for-in, for-of} loops and assignment.
Finally it also fixes some tests in test-js which where passing before
but not now that we have correct behavior :^).
Also add the internal slot names as comments, and separate them into
groups of spec and non-spec members.
This will make it easier to compare the implementation code with the
spec, as well as identify internal slots currently missing or only
present on FunctionObject.
The old name is the result of the perhaps somewhat confusingly named
abstract operation OrdinaryFunctionCreate(), which creates an "ordinary
object" (https://tc39.es/ecma262/#ordinary-object) in contrast to an
"exotic object" (https://tc39.es/ecma262/#exotic-object).
However, the term "Ordinary Function" is not used anywhere in the spec,
instead the created object is referred to as an "ECMAScript Function
Object" (https://tc39.es/ecma262/#sec-ecmascript-function-objects), so
let's call it that.
The "ordinary" vs. "exotic" distinction is important because there are
also "Built-in Function Objects", which can be either implemented as
ordinary ECMAScript function objects, or as exotic objects (our
NativeFunction).
More work needs to be done to move a lot of infrastructure to
ECMAScriptFunctionObject in order to make FunctionObject nothing more
than an interface for objects that implement [[Call]] and optionally
[[Construct]].