This change makes outer min-content width and outer max-content
width for cells to be calculated in the way specifed in the spec:
- The outer min-content width of a table-cell is max(min-width,
min-content width) adjusted by the cell intrinsic offsets.
- The outer max-content width of a table-cell in a non-constrained
column is max(min-width, width, min-content width, min(max-width,
max-content width)) adjusted by the cell intrinsic offsets.
- The outer max-content width of a table-cell in a constrained
column is max(min-width, width, min-content width, min(max-width,
width)) adjusted by the cell intrinsic offsets.
Here I try to address bug where content of table overflows
it's width (hacker news is an example of such site) by
reimplementing some parts of table formatting context.
Now TFC implements first steps of:
https://www.w3.org/TR/css-tables-3/#table-layout-algorithm
but column width and row height distribution steps are
still very incomplete.
This is a big and messy change, and here's the gist:
- AvaliableSpace is now 2x AvailableSize (width and height)
- Layout algorithms are redesigned around the idea of available space
- When doing layout across nested formatting contexts, the parent
context tells the child context how much space is available for the
child's root box in both axes.
- "Available space" replaces "containing block width" in most places.
- The width and height in a box's UsedValues are considered to be
definite after they're assigned to. Marking something as having
definite size is no longer a separate step,
This probably introduces various regressions, but the big win here is
that our layout system now works with available space, just like the
specs are written. Fixing issues will be much easier going forward,
since you don't need to do nearly as much conversion from "spec logic"
to "LibWeb logic" as you previously did.
Instead of formatting contexts flailing around to figure out from the
"inside" how much space is available on the "outside", we should
provide the amount of available space in both axes as an input to run().
This basically means that when something creates a nested formatting
context, the parent context is responsible for telling the nested context
how much space is available for layout. This information is provided
immediately when invoking run().
Note that this commit doesn't pass accurate values in all cases yet.
This first step just makes it build, and passes available values in some
cases where getting them was trivial.
This function should return the automatic height of the formatting
context's root box.
Until now, we've been relying on some magical handshakes between parent
and child context, when negotiating the height of child context root
boxes. This is a step towards something more reasonable.
Previously, we had three layout modes:
- Normal:
- Everything uses the computed values from CSS.
- MinContent:
- Containing blocks act as if they have 0 width.
- All line breaking opportunities are taken.
- MaxContent:
- Containing blocks act as if they have infinite width.
- Only forced line breaks are accepted.
The above was based on a set of misunderstandings of CSS sizing.
A major problem with the above was that *all* containing blocks
behaved differently during intrinsic size layout, not just the
relevant one.
With this patch there are only two layout modes:
- Normal:
- Everything uses the computed values from CSS.
- IntrinsicSizeDetermination:
- One or more boxes have size constraints applied.
There are two size constraints per layout box, set here:
- FormattingState::NodeState::width_constraint
- FormattingState::NodeState::height_constraint
They are of type SizeConstraint and can be one of None, MinContent,
or MaxContent. The default is None.
When performing an IntrinsicSizeDetermination layout, we now assign
a size constraint to the box we're trying to determine the intrinsic
size of, which is then honored by using two new helpers to query
the dimensions of containing blocks:
- FormattingContext::containing_block_width_for(Box)
- FormattingContext::containing_block_height_for(Box)
If there's a relevant constraint in effect on the Box, the size of
its containing block is adjusted accordingly.
This is essentially an implementation of the "available space"
constraints from CSS-SIZING-3. I'm sure some things will break from
this, and we'll have to deal with that separately.
Spec: https://drafts.csswg.org/css-sizing-3/#available
Instead of using Optional<LengthPercentage>, we now use LengthPercentage
for these values. The initial values are all `auto`.
This avoids having to check `has_value()` in a ton of places.
This gets us a bit closer to the recommended algorithms in CSS 2.2 and
CSS Table Module 3.
A couple of table heavy websites (e.g. news.ycombinator.com,
html5test.com, etc.) now look quite okay. :^)
The old mode names, while mechanically accurate, didn't really reflect
their relationship to the CSS specifications.
This patch renames them as follows:
Default => Normal
AllPossibleLineBreaks => MinContent
OnlyRequiredLineBreaks => MaxContent
There's also now an explainer comment with the LayoutMode enum about the
specific implications of layout in each mode.
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
This property represents the CSS content size, so let's reduce ambiguity
by using the spec terminology.
We also bring a bunch of related functions along for the ride.
A lot of this is quite ugly, but it should only be so until I remove
Length::Type::Percentage entirely. (Which should happen later in this
PR, otherwise, yell at me!) For now, a lot of things have to be
resolved twice, first from a LengthPercentage to a Length, and then
from a Length to a pixel one.
Per the spec, only a BlockContainer" can have line boxes, so let's not
clutter up every Layout::Box with line boxes.
This also allows us to establish an invariant that BFC and IFC always
operate on a Layout::BlockContainer.
Note that if BlockContainer has all block-level children, its line boxes
are not used for anything. They are only used in the all inline-level
children scenario.
Our "frame" concept very closely matches what the web specs call a
"browsing context", so let's rename it to that. :^)
The "main frame" becomes the "top-level browsing context",
and "sub-frames" are now "nested browsing contexts".
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
As well as correctly calculating the height of TableRowBox, this change
calculates the heights of TableRowGroupBoxs also.
As before, this does not correctly take into consideration the 'height'
attribute.
Now the horizontal layout is approximately correct for the
TableRowGroupBoxs we can now see that the `layout_row` method will need
updating to correctly calculate cell width across all rows, not just the
current TableRowGroupBox.