I've attempted to handle the errors gracefully where it was clear how to
do so, and simple, but a lot of this was just adding
`release_value_but_fixme_should_propagate_errors()` in places.
The WindowServer _really_ does not need to know the filesystem path to
it's wallpaper, and allows setting arbitrary wallpapers (those outside
of `/res/wallpapers`).
The GUI::Desktop will keep track of the path to the wallpaper (if any),
and save it to config if desired (to be persisted).
This avoids the need to `unveil` paths to the wallpaper, fixing #11158
This change unfortunately cannot be atomically made without a single
commit changing everything.
Most of the important changes are in LibIPC/Connection.cpp,
LibIPC/ServerConnection.cpp and LibCore/LocalServer.cpp.
The notable changes are:
- IPCCompiler now generates the decode and decode_message functions such
that they take a Core::Stream::LocalSocket instead of the socket fd.
- IPC::Decoder now uses the receive_fd method of LocalSocket instead of
doing system calls directly on the fd.
- IPC::ConnectionBase and related classes now use the Stream API
functions.
- IPC::ServerConnection no longer constructs the socket itself; instead,
a convenience macro, IPC_CLIENT_CONNECTION, is used in place of
C_OBJECT and will generate a static try_create factory function for
the ServerConnection subclass. The subclass is now responsible for
passing the socket constructed in this function to its
ServerConnection base; the socket is passed as the first argument to
the constructor (as a NonnullOwnPtr<Core::Stream::LocalServer>) before
any other arguments.
- The functionality regarding taking over sockets from SystemServer has
been moved to LibIPC/SystemServerTakeover.cpp. The Core::LocalSocket
implementation of this functionality hasn't been deleted due to my
intention of removing this class in the near future and to reduce
noise on this (already quite noisy) PR.
Briefly flash the menubar menu containing the keyboard shortcut action
to give the user immediate visual feedback on their interaction with the
system.
WindowServer returns {} on non-existing screen index,
however shot program hangs instead of retriving an empty
ShareableBitmap. With this change, the function returns an empty
ShareableBitmap and shot exits gracefully.
...to reevaluate_hover_state_for_window(). This name is not super great
either, but at least it doesn't sound like the window is necessarily
currently being hovered.
Add option to reverse primary and secondary buttons in Mouse Settings.
- WindowServer.ini: add default entry
- switch-mouse-buttons.png: new icon for settings entry
- Mouse.gml/MouseWidget.*: new settings dialog
- ClientConnection/WindowManager/Server: window message for settings
- EventLoop.cpp: swap buttons 1 and 2 if settings are on
This fixes an issue for the magnifier that when the screen scaling is
increased to 2 the magnifier doesn't center around the cursor.
Since booting Serenity with multiple displays doesn't work at the moment
the rescaling is only added for the one display case.
This allows any client to ask the WindowServer to give it the color
of the screen bitmap under the cursor.
There's currently no way to get the screen bitmap *without* the
cursor already drawn on it, so for now we just take a pixel
beside the actual cursor position to avoid just getting the cursors
color.
This feature was problematic for several reasons:
- Tracking *all* the user activity seems like a privacy nightmare.
- LibGUI actually only supports one globally tracking widget per window,
even if no window is necessary, or if multiple callbacks are desired.
- Widgets can easily get confused whether an event is actually directed
at it, or is actually just the result of global tracking.
The third item caused an issue where right-clicking CatDog opened two
context menus instead of one.
Only one place used this argument and it was to hold on to a strong ref
for the object. Since we already do that now, there's no need to keep
this argument around since this can be easily captured.
This commit contains no changes.
Previously, when `screen_index` was not provided when calling
`ClientConnection::get_screen_bitmap`, the bitmap that was created
was always the size of the bounding rect of the screen. The actual
screen bitmap was being cropped, but the bitmap being returned was
of the original size with just black pixels everywhere else.
Currently, any number of menubars can be plugged in and out of a window.
This is unnecessary complexity, since we only need one menubar on a
window. This commit removes most of the logic for dynamically attaching
and detaching menubars and makes one menubar always available. The
menubar is only considered existent if it has at least a single menu in
it (in other words, an empty menubar will not be shown).
This commit additionally fixes a bug wherein menus added after a menubar
has been attached would not have their rects properly setup, and would
therefore appear glitched out on the top left corner of the menubar.
This implements window stealing in WindowServer, which allows clients
to mark a window they own as 'stealable' by another client. Indicating
that the other client may use it for any purpose.
This also updates set_window_parent_from_id so that the client must
first mark its window as stealable before allowing other clients to
use it as a parent.
This also adds the ability to query how many virtual desktops are
set up, and for the Taskbar to be notified when the active virtual
desktop has changed.
The launch_origin_rect parameter to create_window() specifies where on
screen the window was launched from. It's optional, but if you provide
it, the new window will have a short wireframe animation from the origin
to the initial window frame rect.
GUI::Window looks for the "__libgui_launch_origin_rect" environment
variable. Put your launch origin rect in there with the format
"<x>,<y>,<width>,<height>" and the first GUI::Window shown by the app
will use that as the launch origin rect.
Also it looks pretty neat, although I'm sure we can improve it. :^)
An Overlay is similar to a transparent window, but has less overhead
and does not get rendered within the window stack. Basically, the area
that an Overlay occupies forces transparency rendering for any window
underneath, which allows us to render them flicker-free.
This also adds a new API that allows displaying the screen numbers,
e.g. while the user configures the screen layout in DisplaySettings
Because other things like drag&drop or the window-size label are not
yet converted to use this new mechanism, they will be drawn over the
screen-number currently.
This enables the shot utility to capture all screens or just one, and
enables the Magnifier application to track the mouse cursor across
multiple screens.
This enables rendering of mixed-scale screen layouts with e.g. high
resolution cursors and window button icons on high-dpi screens while
using lower resolution bitmaps on regular screens.
This sets the stage so that DisplaySettings can configure the screen
layout and set various screen resolutions in one go. It also allows
for an easy "atomic" revert of the previous settings.
This allows WindowServer to use multiple framebuffer devices and
compose the desktop with any arbitrary layout. Currently, it is assumed
that it is configured contiguous and non-overlapping, but this should
eventually be enforced.
To make rendering efficient, each window now also tracks on which
screens it needs to be rendered. This way we don't have to iterate all
the windows for each screen but instead use the same rendering loop and
then only render to the screen (or screens) that the window actually
uses.
Let clients manage their own window ID's. If you try to create a new
window with an existing ID, WindowServer will simply disconnect you
for misbehaving.
This removes the need for window creation to be synchronous, which
means that most GUI applications can now batch their entire GUI
initialization sequence without having to block waiting for responses.
This patch moves the magnifier rect computation over to the server side
to ensure that the mouse cursor position and the screen image never get
out of sync.