Instead of TextPaintable fragments being an offset+length view into the
layout node, they are now a view into the paintable instead.
This removes an awkward time window where we'd have bogus state in text
fragments after layout invalidation but before relayout. It also makes
the code slightly nicer in general, since there's less mixing of layout
and painting concepts.
Every single client of this function was immediately calling paintable()
on the result anyway, so there was no need to return a layout node!
This automatically leverages the cached containing block pointer we
already have in Paintable, which melts away a bunch of unnecessary
traversal in hit testing and painting. :^)
This change modifies hit_test() to no longer return the first paintable
encountered at a specified position. Instead, this function accepts a
callback that is invoked for each paintable located at a position, in
hit-testing order.
This modification will allow us to reuse this call for
`Document.elementsFromPoint()` in upcoming changes.
Refactor to resolve paint-only properties before painting, aiming to
stop using layout nodes during recording of painting commands.
Also adds a test, as we have not had any for outlines yet.
With this change, instead of applying only the border-radius clipping
from the closest containing block with hidden overflow, we now collect
all boxes within the containing block chain and apply the clipping from
all of them.
In this commit we have optimized the handling of scroll offsets and
clip rectangles to improve performance. Previously, the process
involved multiple full traversals of the paintable tree before each
repaint, which was highly inefficient, especially on pages with a
large number of paintables. The steps were:
1. Traverse the paintable tree to identify all boxes with scrollable or
clipped overflow.
2. Gather the accumulated scroll offset or clip rectangle for each box.
3. Perform another traversal to apply the corresponding scroll offset
and clip rectangle to each paintable.
To address this, we've adopted a new strategy that separates the
assignment of the scroll/clip frame from the refresh of accumulated
scroll offsets and clip rectangles, thus reducing the workload:
1. Post-relayout: Identify all boxes with overflow and link each
paintable to the state of its containing scroll/clip frame.
2. Pre-repaint: Update the clip rectangle and scroll offset only in the
previously identified boxes.
This adjustment ensures that the costly tree traversals are only
necessary after a relayout, substantially decreasing the amount of work
required before each repaint.
This change makes hit-testing more consistent in the handling of hidden
overflow by reusing the same clip-rectangles.
Also, it fixes bugs where the box is visible for hit-testing even
though it is clipped by the hidden overflow of the containing block.
The hit-testing position is now shifted by the scroll offsets before
performing any checks for containment. This is implemented by assigning
each PaintableBox/InlinePaintable an offset corresponding to the scroll
frame in which it is contained. The non-scroll-adjusted position is
still passed down when recursing to children because the assigned
offset accumulated for nested scroll frames.
With this change, hit testing works in the Inspector.
Fixes https://github.com/SerenityOS/serenity/issues/22068
With this change, clip rectangles for boxes with hidden overflow or the
clip property are no longer calculated during the recording of painting
commands. Instead, it has moved to the "pre-paint" phase, along with
the assignment of scrolling offsets, and works in the following way:
1. The paintable tree is traversed to collect all paintable boxes that
have hidden overflow or use the CSS clip property. For each of these
boxes, the "final" clip rectangle is calculated by intersecting clip
rectangles in the containing block chain for a box.
2. The paintable tree is traversed another time, and a clip rectangle
is assigned for each paintable box contained by a node with hidden
overflow or the clip property.
This way, clipping becomes much easier during the painting commands
recording phase, as it only concerns the use of already assigned clip
rectangles. The same approach is applied to handle scrolling offsets.
Also, clip rectangle calculation is now implemented more correctly, as
we no longer stop at the stacking context boundary while intersecting
clip rectangles in the containing block chain.
Fixes:
https://github.com/SerenityOS/serenity/issues/22932https://github.com/SerenityOS/serenity/issues/22883https://github.com/SerenityOS/serenity/issues/22679https://github.com/SerenityOS/serenity/issues/22534
This change introduces a method for direct access to the paintable of
a PaintableFragment. This method is intended to replace the usage of
the layout node pointer. Currently, we are only eliminating the use
of `layout_node()` in hit testing.
Additionally, we no longer check if a fragment's layout node is a
`BlockContainer` before recursing into its children during hit testing.
This check was likely relevant when all fragments were owned by
`PaintableWithLines`, but now it should be safe to remove this check.
The paintable tree structure more closely matches the painting order
when fragments are owned by corresponding inline paintables. This
change does not affect the layout tree, as it is more convenient for
layout purposes to have all fragments owned by a block container in
one place.
Additionally, this improves performance significantly on pages with
many fragments, as we no longer have to walk the ancestor chain up
to the closest block container to determine if a fragment belongs
to an inline paintable.
This is a part of refactoring towards making the paintable tree
independent of the layout tree. Now, instead of transferring text
fragments from the layout tree to the paintable tree during the layout
commit phase, we allocate separate PaintableFragments that contain only
the information necessary for painting. Doing this also allows us to
get rid LineBoxes, as they are used only during layout.
Fragments contained by the inline node should be painted in the
foreground phase for this node, instead of being painted as a part of
the containing PaintableWithLines. This change implements that by
marking all fragments contained by inline nodes so they can be skipped
while painting the content of PaintableWithLines. This is an ugly way,
and instead, we should make InlinePaintables own all fragments
contained by them.
This fixes the issue that occurred when, after clicking an inline
paintable page would always scroll to the top. The problem was that
`scroll_an_element_into_view()` relies on `get_bounding_client_rect()`
to produce the correct scroll position and for inline paintables we
were always returning zero rect before this change.
This change fixes a problem that we should not call `to_px()` to
resolve any length or percentage values during paintables traversal
because that is supposed to happen while performing layout.
Also it improves performance because before we were resolving border
radii during each painting phase but now it happens only once during
layout.
Currently, in CPU painter, border painting is implemented by building
a Gfx::Path that is filled by Gfx::AntiAliasingPainter. In the GPU
painter, we will likely want to do something different, and with a
special command, it becomes possible.
Also, by making this change, the CPU executor also benefits because now
we can skip building paths for borders that are out of the viewport.
By consistently accepting only device pixel values instead of a mix of
CSSPixels and DevicePixels values, we can simplify the implementation
of paint_border() and paint_all_borders().
Build a grid snapped to device pixels and use it to construct the
rectangles for the cell edges, same as for collapsed borders. This is
especially important when border-spacing is set to 0 since it avoids
gaps between adjacent cells which have borders set.
...along with `outline-color`, `outline-style`, and `outline-width`.
This re-uses the existing border-painting code, which seems to work well
enough!
This replaces the previous code for drawing focus-outlines, with generic
outline painting for any elements that want it. Focus outlines are now
instead supported by this code in Default.css:
```css
:focus-visible {
outline: auto;
}
```
This makes it possible to set a pseudo-element as the inspected node
using Document::set_inspected_node(), Document then provides
inspected_layout_node() for the painting related functions.
This simplifies the ownership model between DOM/layout/paint nodes
immensely by deferring to the garbage collector for figuring out what's
live and what's not.
This fixes a few sizing issues too. The page size is now correct in most
cases! \o/
We get to remove some of the `to_type<>()` shenanigans, though it
reappears in some other places.
This commit adds some much nicer border painting, which now supports:
- Elliptical corners
- Blending between different border thicknesses, with rounded corners
- Anti-aliasing
There are some little TODOs left to tackle:
- Painting the corners with line styles other than solid
- Blending between colors on the corners (see comments)
The painting requires allocating a small bitmap, that only fits the
corners (so in most cases this is very small).
This bitmap is then cached so for all paints but the first there will
be no further allocations.
By using enclosing_int_rect(), borders and backgrounds of boxes were
sometimes 1 pixel off, making things slightly larger than they should
be. Fix this by using to_rounded() instead of enclosing_int_rect().
There's definitely more of these type of issues lurking in the code,
and we'll get to them in time.
The `text-shadow` property is almost identical to `box-shadow`:
> Values are interpreted as for box-shadow [CSS-BACKGROUNDS-3].
> (But note that the inset keyword are not allowed.)
So, let's use the same data structures and parsing code for both. :^)
The absolute rect of a paintable is somewhat expensive to compute. This
is because all coordinates are relative to the nearest containing block,
so we have to traverse the containing block chain and apply each offset
to get the final rect.
Paintables will never move between containing blocks, nor will their
absolute rect change. If anything changes, we'll simpl make a new
paintable and replace the old one.
Take advantage of this by caching the containing block and absolute rect
after first access.