On i686, reading integers larger than `2^32 - 1` would fail as the
32-bit `size_t` parameter would overflow. This caused us to read too few
bytes in LibDebug's DWARF parser. Making this method templated solves
this issue, as we now can call this API with a `u64` parameter.
The get_dir_entries syscall failed if the serialized form of all the
directory entries together was too large to fit in its temporary buffer.
Now the kernel uses a fixed size buffer, that is flushed to an output
buffer when it is full. If this flushing operation fails because there
is not enough space available, the syscall will return -EINVAL. That
error code is then used in userspace as a signal to allocate a larger
buffer and retry the syscall.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
This fixes an OOB access when the last read/written chunk is empty (as we _just_
started on a new chunk).
Also adds a test case to TestMemoryStream.
Found via human fuzzing in the shell:
```sh
for $(cat /dev/urandom) {
clear
match $it {
?* as (x) {
echo $x
sleep 1
}
}
}
```
would assert at some point.
OutputMemoryStream was originally a proxy for DuplexMemoryStream that
did not expose any reading API.
Now I need to add another class that is like OutputMemoryStream but only
for static buffers. My first idea was to make OutputMemoryStream do that
too, but I think it's much better to have a distinct class for that.
I originally wanted to call that class FixedOutputMemoryStream but that
name is really cumbersome and it's a bit unintuitive because
InputMemoryStream is already reading from a fixed buffer.
So let's just use DuplexMemoryStream instead of OutputMemoryStream for
any dynamic stuff and create a new OutputMemoryStream for static
buffers.
Consider the following snippet:
void foo(InputStream& stream) {
if(!stream.eof()) {
u8 byte;
stream >> byte;
}
}
There is a very subtle bug in this snippet, for some input streams eof()
might return false even if no more data can be read. In this case an
error flag would be set on the stream.
Until now I've always ensured that this is not the case, but this made
the implementation of eof() unnecessarily complicated.
InputFileStream::eof had to keep a ByteBuffer around just to make this
possible. That meant a ton of unnecessary copies just to get a reliable
eof().
In most cases it isn't actually necessary to have a reliable eof()
implementation.
In most other cases a reliable eof() is avaliable anyways because in
some cases like InputMemoryStream it is very easy to implement.
The streaming operator doesn't short-circuit, consider the following
snippet:
void foo(InputStream& stream) {
int a, b;
stream >> a >> b;
}
If the first read fails, the second is called regardless. It should be
well defined what happens in this case: nothing.