ladybird/AK/MemoryStream.h
asynts 96edcbc27c AK: Lower the requirements for InputStream::eof and rename it.
Consider the following snippet:

    void foo(InputStream& stream) {
        if(!stream.eof()) {
            u8 byte;
            stream >> byte;
        }
    }

There is a very subtle bug in this snippet, for some input streams eof()
might return false even if no more data can be read. In this case an
error flag would be set on the stream.

Until now I've always ensured that this is not the case, but this made
the implementation of eof() unnecessarily complicated.
InputFileStream::eof had to keep a ByteBuffer around just to make this
possible. That meant a ton of unnecessary copies just to get a reliable
eof().

In most cases it isn't actually necessary to have a reliable eof()
implementation.

In most other cases a reliable eof() is avaliable anyways because in
some cases like InputMemoryStream it is very easy to implement.
2020-09-14 20:58:12 +02:00

339 lines
10 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/MemMem.h>
#include <AK/Stream.h>
#include <AK/Vector.h>
namespace AK {
class InputMemoryStream final : public InputStream {
public:
InputMemoryStream(ReadonlyBytes bytes)
: m_bytes(bytes)
{
}
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_offset >= m_bytes.size(); }
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto count = min(bytes.size(), remaining());
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
m_offset += count;
return count;
}
bool read_or_error(Bytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
m_offset += bytes.size();
return true;
}
bool discard_or_error(size_t count) override
{
if (remaining() < count) {
set_recoverable_error();
return false;
}
m_offset += count;
return true;
}
void seek(size_t offset)
{
ASSERT(offset < m_bytes.size());
m_offset = offset;
}
u8 peek_or_error() const
{
if (remaining() == 0) {
set_recoverable_error();
return 0;
}
return m_bytes[m_offset];
}
// LEB128 is a variable-length encoding for integers
bool read_LEB128_unsigned(size_t& result)
{
const auto backup = m_offset;
result = 0;
size_t num_bytes = 0;
while (true) {
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
// past the end, this is fixed here.
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
const u8 byte = m_bytes[m_offset];
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
++m_offset;
if (!(byte & (1 << 7)))
break;
++num_bytes;
}
return true;
}
// LEB128 is a variable-length encoding for integers
bool read_LEB128_signed(ssize_t& result)
{
const auto backup = m_offset;
result = 0;
size_t num_bytes = 0;
u8 byte = 0;
do {
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
// past the end, this is fixed here.
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
byte = m_bytes[m_offset];
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
++m_offset;
++num_bytes;
} while (byte & (1 << 7));
if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) {
// sign extend
result |= ((size_t)(-1) << (num_bytes * 7));
}
return true;
}
ReadonlyBytes bytes() const { return m_bytes; }
size_t offset() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
private:
ReadonlyBytes m_bytes;
size_t m_offset { 0 };
};
// All data written to this stream can be read from it. Reading and writing is done
// using different offsets, meaning that it is not necessary to seek to the start
// before reading; this behaviour differs from BufferStream.
class DuplexMemoryStream final : public DuplexStream {
public:
static constexpr size_t chunk_size = 4 * 1024;
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_write_offset == m_read_offset; }
bool discard_or_error(size_t count) override
{
if (m_write_offset - m_read_offset < count) {
set_recoverable_error();
return false;
}
m_read_offset += count;
try_discard_chunks();
return true;
}
Optional<size_t> offset_of(ReadonlyBytes value) const
{
if (value.size() > remaining())
return {};
// First, find which chunk we're in.
auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
auto first_chunk_index = chunk_index;
auto last_written_chunk_offset = m_write_offset % chunk_size;
auto first_chunk_offset = m_read_offset % chunk_size;
size_t last_chunk_offset = 0;
auto found_value = false;
for (; chunk_index <= last_written_chunk_index; ++chunk_index) {
auto chunk_bytes = m_chunks[chunk_index].bytes();
size_t chunk_offset = 0;
if (chunk_index == last_written_chunk_index) {
chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
}
if (chunk_index == first_chunk_index) {
chunk_bytes = chunk_bytes.slice(first_chunk_offset);
chunk_offset = first_chunk_offset;
}
// See if 'value' is in this chunk,
auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
if (!position)
continue; // Not in this chunk either :(
// We found it!
found_value = true;
last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
break;
}
if (found_value) {
if (first_chunk_index == chunk_index)
return last_chunk_offset - first_chunk_offset;
return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
}
// No dice.
return {};
}
size_t read_without_consuming(Bytes bytes) const
{
size_t nread = 0;
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
}
return nread;
}
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto nread = read_without_consuming(bytes);
m_read_offset += nread;
try_discard_chunks();
return nread;
}
bool read_or_error(Bytes bytes) override
{
if (m_write_offset - m_read_offset < bytes.size()) {
set_recoverable_error();
return false;
}
read(bytes);
return true;
}
size_t write(ReadonlyBytes bytes) override
{
size_t nwritten = 0;
while (bytes.size() - nwritten > 0) {
if ((m_write_offset + nwritten) % chunk_size == 0)
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));
nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
}
m_write_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
write(bytes);
return true;
}
ByteBuffer copy_into_contiguous_buffer() const
{
auto buffer = ByteBuffer::create_uninitialized(remaining());
const auto nread = read_without_consuming(buffer);
ASSERT(nread == buffer.size());
return buffer;
}
size_t roffset() const { return m_read_offset; }
size_t woffset() const { return m_write_offset; }
size_t remaining() const { return m_write_offset - m_read_offset; }
private:
void try_discard_chunks()
{
while (m_read_offset - m_base_offset >= chunk_size) {
m_chunks.take_first();
m_base_offset += chunk_size;
}
}
Vector<ByteBuffer> m_chunks;
size_t m_write_offset { 0 };
size_t m_read_offset { 0 };
size_t m_base_offset { 0 };
};
class OutputMemoryStream final : public OutputStream {
public:
size_t write(ReadonlyBytes bytes) override { return m_stream.write(bytes); }
bool write_or_error(ReadonlyBytes bytes) override { return m_stream.write_or_error(bytes); }
ByteBuffer copy_into_contiguous_buffer() const { return m_stream.copy_into_contiguous_buffer(); }
Optional<size_t> offset_of(ReadonlyBytes value) const { return m_stream.offset_of(value); }
size_t size() const { return m_stream.woffset(); }
private:
DuplexMemoryStream m_stream;
};
}
using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;
using AK::OutputMemoryStream;