SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
Problem:
- `typedef` is a keyword which comes from C and carries with it old
syntax that is hard to read.
- Creating type aliases with the `using` keyword allows for easier
future maintenance because it supports template syntax.
- There is inconsistent use of `typedef` vs `using`.
Solution:
- Use `clang-tidy`'s checker called `modernize-use-using` to update
the syntax to use the newer syntax.
- Remove unused functions to make `clang-tidy` happy.
- This results in consistency within the codebase.
This looks at three things:
- if the type has a typedef `AllowOwnPtr', respect that
- if not, disallow construction if both of `ref()' and `unref()' are
present.
Note that in the second case, if a type only defines `ref()' or only
defines `unref()', an OwnPtr can be created, as a RefPtr of that type
would be ill-formed.
Also marks a `Performance' to explicitly allow OwnPtrs.
This stopped working quite some time ago due to Clang losing track of
typestates for some reason and everything becoming "unknown".
Since we're primarily using GCC anyway, it doesn't seem worth it to try
and maintain this non-working experiment for a secondary compiler.
Also it doesn't look like the Clang team is actively maintaining this
flag anyway. So good-bye, -Wconsumed. :/
Same issue here as we had with RefPtr and NonnullRefPtr.
Since we can't make copies of an owning pointer, we don't get quite the
same static_ptr_cast<T> here. Instead I've only added a new templated
version of OwnPtr::release_nonnull() in this patch, to solve the only
issue that popped up.
I'm not sure what the best solution here is, but this works for now.
This was only used by HashTable::dump() which I used when doing the
first HashTable implementation. Removing this allows us to also remove
most includes of <AK/kstdio.h>.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Since NonnullRefPtr and NonnullOwnPtr cannot be null, it is pointless
to convert them to a bool, since it would always be true.
This patch makes it an error to null-check one of these pointers.
Add the concept of a PeekType to Traits<T>. This is the type we'll
return (wrapped in an Optional) from HashMap::get().
The PeekType for OwnPtr<T> and NonnullOwnPtr<T> is const T*,
which means that HashMap::get() will return an Optional<const T*> for
maps-of-those.
Add an "ElementType" typedef to NonnullOwnPtr and NonnullRefPtr to allow
clients to easily find the pointee type. Then use this to remove a template
argument from NonnullPtrVector. :^)
This is just like OwnPtr (also single-owner), except it cannot be null.
NonnullOwnPtr is perfect as the return type of functions that never need to
return nullptr.
It's also useful as an argument type to encode the fact that the argument
must not be nullptr.
The make<Foo>() helper is changed to return NonnullOwnPtr<Foo>.
Note: You can move() out of a NonnullOwnPtr, and after that the object is
in an invalid state. Internally it will be a nullptr at this point, so we'll
still catch misuse, but the only thing that should be done in this state
is running the destructor. I've used consumable annotations to generate some
warnings when using a NonnullOwnPtr after moving from it, but these only
work when compiling with clang, so be aware of that.