ladybird/AK/NonnullOwnPtr.h
Andreas Kling 4f200def9c AK: Stop allowing implicit downcast with OwnPtr and NonnullOwnPtr
Same issue here as we had with RefPtr and NonnullRefPtr.

Since we can't make copies of an owning pointer, we don't get quite the
same static_ptr_cast<T> here. Instead I've only added a new templated
version of OwnPtr::release_nonnull() in this patch, to solve the only
issue that popped up.

I'm not sure what the best solution here is, but this works for now.
2020-04-05 11:32:30 +02:00

206 lines
5.5 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/LogStream.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
namespace AK {
template<typename T>
class RefPtr;
template<typename T>
class NonnullRefPtr;
template<typename T>
class WeakPtr;
template<typename T>
class CONSUMABLE(unconsumed) NonnullOwnPtr {
public:
typedef T ElementType;
enum AdoptTag { Adopt };
RETURN_TYPESTATE(unconsumed)
NonnullOwnPtr(AdoptTag, T& ptr)
: m_ptr(&ptr)
{
}
RETURN_TYPESTATE(unconsumed)
NonnullOwnPtr(NonnullOwnPtr&& other)
: m_ptr(other.leak_ptr())
{
ASSERT(m_ptr);
}
template<typename U>
RETURN_TYPESTATE(unconsumed)
NonnullOwnPtr(NonnullOwnPtr<U>&& other)
: m_ptr(other.leak_ptr())
{
ASSERT(m_ptr);
}
~NonnullOwnPtr()
{
clear();
#ifdef SANITIZE_PTRS
if constexpr (sizeof(T*) == 8)
m_ptr = (T*)(0xe3e3e3e3e3e3e3e3);
else
m_ptr = (T*)(0xe3e3e3e3);
#endif
}
NonnullOwnPtr(const NonnullOwnPtr&) = delete;
template<typename U>
NonnullOwnPtr(const NonnullOwnPtr<U>&) = delete;
NonnullOwnPtr& operator=(const NonnullOwnPtr&) = delete;
template<typename U>
NonnullOwnPtr& operator=(const NonnullOwnPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr(const RefPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr(const NonnullRefPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr(const WeakPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr& operator=(const RefPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr& operator=(const NonnullRefPtr<U>&) = delete;
template<typename U>
NonnullOwnPtr& operator=(const WeakPtr<U>&) = delete;
RETURN_TYPESTATE(unconsumed)
NonnullOwnPtr& operator=(NonnullOwnPtr&& other)
{
NonnullOwnPtr ptr(move(other));
swap(ptr);
return *this;
}
template<typename U>
RETURN_TYPESTATE(unconsumed)
NonnullOwnPtr& operator=(NonnullOwnPtr<U>&& other)
{
NonnullOwnPtr ptr(move(other));
swap(ptr);
return *this;
}
CALLABLE_WHEN(unconsumed)
SET_TYPESTATE(consumed)
T* leak_ptr()
{
return exchange(m_ptr, nullptr);
}
CALLABLE_WHEN(unconsumed)
T* ptr() { return m_ptr; }
CALLABLE_WHEN(unconsumed)
const T* ptr() const { return m_ptr; }
CALLABLE_WHEN(unconsumed)
T* operator->() { return m_ptr; }
CALLABLE_WHEN(unconsumed)
const T* operator->() const { return m_ptr; }
CALLABLE_WHEN(unconsumed)
T& operator*() { return *m_ptr; }
CALLABLE_WHEN(unconsumed)
const T& operator*() const { return *m_ptr; }
CALLABLE_WHEN(unconsumed)
operator const T*() const { return m_ptr; }
CALLABLE_WHEN(unconsumed)
operator T*() { return m_ptr; }
operator bool() const = delete;
bool operator!() const = delete;
void swap(NonnullOwnPtr& other)
{
::swap(m_ptr, other.m_ptr);
}
template<typename U>
void swap(NonnullOwnPtr<U>& other)
{
::swap(m_ptr, other.m_ptr);
}
private:
void clear()
{
if (!m_ptr)
return;
delete m_ptr;
m_ptr = nullptr;
}
T* m_ptr = nullptr;
};
template<typename T>
inline NonnullOwnPtr<T> adopt_own(T& object)
{
return NonnullOwnPtr<T>(NonnullOwnPtr<T>::Adopt, object);
}
template<class T, class... Args>
inline NonnullOwnPtr<T>
make(Args&&... args)
{
return NonnullOwnPtr<T>(NonnullOwnPtr<T>::Adopt, *new T(forward<Args>(args)...));
}
template<typename T>
struct Traits<NonnullOwnPtr<T>> : public GenericTraits<NonnullOwnPtr<T>> {
using PeekType = const T*;
static unsigned hash(const NonnullOwnPtr<T>& p) { return int_hash((u32)p.ptr()); }
static bool equals(const NonnullOwnPtr<T>& a, const NonnullOwnPtr<T>& b) { return a.ptr() == b.ptr(); }
};
template<typename T>
inline const LogStream& operator<<(const LogStream& stream, const NonnullOwnPtr<T>& value)
{
return stream << value.ptr();
}
template<typename T, typename U>
inline void swap(NonnullOwnPtr<T>& a, NonnullOwnPtr<U>& b)
{
a.swap(b);
}
}
using AK::adopt_own;
using AK::make;
using AK::NonnullOwnPtr;