When the preprocessor encounters an #include statement it now adds
the preprocessor definitions that exist in the included header to its
own set of definitions.
We previously only aggregated the definitions from headers after
processing the source, which was less correct. (For example, there
could be an #ifdef that depends on a definition from another header).
We now call Preprocessor::process_and_lex() and pass the result to the
parser.
Doing the lexing in the preprocessor will allow us to maintain the
original position information of tokens after substituting definitions.
We need test-js for the parser tests for test262, but we don't need to
rebuild all of Lagom twice. This was missed when we did the initial
change to shared libraries. Before #9017, the Lagom build for test-js
is what built libLagom.a for the libjs-test262-runner to link against.
Now that we are building libjs.so and its dependencies in the runner's
build directory, we should build test-js there as well.
Requires linusg/libjs-test262#32 in order to properly find the built
test-js.
Before Libraries was moved to Userland/Libraries syslog.h had a bunch
of manually aligned defines and array initializations.
Andreas seems to have formatted the file with clang-format as part of
that file move. Since syslog.h is now properly formatted, we don't
need to exclude it from the linter list.
We already cache these files to prevent re-downloading them in the other
CI workflows, so this just brings the test262 runner up to speed with
the rest of them.
This commit implements the ISO 9660 filesystem as specified in ECMA 119.
Currently, it only supports the base specification and Joliet or Rock
Ridge support is not present. The filesystem will normalize all
filenames to be lowercase (same as Linux).
The filesystem can be mounted directly from a file. Loop devices are
currently not supported by SerenityOS.
Special thanks to Lubrsi for testing on real hardware and providing
profiling help.
Co-Authored-By: Luke <luke.wilde@live.co.uk>
I had to move the thread list out of the protected base area of Process
so that it could live with its lock (which needs to be mutable).
Ideally it would live in the protected area, so maybe we can figure out
a way to do that later.
When I laid down the foundation for the start of the big process lock
separation, I added asserts to all system call implementations to
validate we hold the big process lock in the locations we think we
should be.
Adding that assert to sys$profiling_enable broke boot time profiling as
we were never holding the lock on boot. Even though it's not technically
required, lets make sure to hold the lock while enabling to appease the
assert.
VirtualConsole::m_lock was only used in a single place: on_tty_write()
That function is already protected by a global lock, so this second
lock served no purpose whatsoever.
I use the `configure-components` functionality locally during
development. There are a few services (SpiceAgent) which aren't marked
as required components, and hence aren't built in all configurations,
but we still try to launch them in all configurations.
Instead of letting the forked SystemServer process crash, lets
gracefully handle the situation of a missing binary and provide a
message to the user.
As this is a test machine I use personally to test "modern" hardware
setups, it feels quite comfortable to not care too much about VGA with
this type of machine.
Also, we don't actively use the IDE controller on this machine type, so
let's just remove it :^)
Note: TCPSocket::create_client() has a dubious locking process where
the sockets by tuple table is first shared lock to check if the socket
exists and bail out if it does, then unlocks, then exclusively locks to
add the tuple. There could be a race condition where two client
creation requests for the same tuple happen at the same time and both
cleared the shared lock check. When in doubt, lock exclusively the
whole time.
A protected value is a variable with enforced locking semantics. The
value is protected with a Mutex and can only be accessed through a
Locked object that holds a MutexLocker to said Mutex. Therefore, the
value itself cannot be accessed except through the proper locking
mechanism, which enforces correct locking semantics.
The Locked object has knowledge of shared and exclusive lock types and
will only return const-correct references and pointers. This should
help catch incorrect locking usage where a shared lock is acquired but
the user then modifies the locked value.
This is not a perfect solution because dereferencing the Locked object
returns the value, so the caller could defeat the protected value
semantics once it acquires a lock by keeping a pointer or a reference
to the value around. Then again, this is C++ and we can't protect
against malicious users from within the kernel anyways, but we can
raise the threshold above "didn't pay attention".
This is some syntaxic sugar to use a ContendedResource object with
reference counting. This effectively dissociates merely holding a
reference to an object and actually using the object in a way that
requires locking it against concurrent use.