Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
These are formatters that can only be used with debug print
functions, such as dbgln(). Currently this is limited to
Formatter<ErrorOr<T>>. With this you can still debug log ErrorOr
values (good for debugging), but trying to use them in any
String::formatted() call will fail (which prevents .to_string()
errors with the new failable strings being ignored).
You make a formatter debug only by adding a constexpr method like:
static constexpr bool is_debug_only() { return true; }
DeprecatedString (formerly String) has been with us since the start,
and it has served us well. However, it has a number of shortcomings
that I'd like to address.
Some of these issues are hard if not impossible to solve incrementally
inside of DeprecatedString, so instead of doing that, let's build a new
String class and then incrementally move over to it instead.
Problems in DeprecatedString:
- It assumes string allocation never fails. This makes it impossible
to use in allocation-sensitive contexts, and is the reason we had to
ban DeprecatedString from the kernel entirely.
- The awkward null state. DeprecatedString can be null. It's different
from the empty state, although null strings are considered empty.
All code is immediately nicer when using Optional<DeprecatedString>
but DeprecatedString came before Optional, which is how we ended up
like this.
- The encoding of the underlying data is ambiguous. For the most part,
we use it as if it's always UTF-8, but there have been cases where
we pass around strings in other encodings (e.g ISO8859-1)
- operator[] and length() are used to iterate over DeprecatedString one
byte at a time. This is done all over the codebase, and will *not*
give the right results unless the string is all ASCII.
How we solve these issues in the new String:
- Functions that may allocate now return ErrorOr<String> so that ENOMEM
errors can be passed to the caller.
- String has no null state. Use Optional<String> when needed.
- String is always UTF-8. This is validated when constructing a String.
We may need to add a bypass for this in the future, for cases where
you have a known-good string, but for now: validate all the things!
- There is no operator[] or length(). You can get the underlying data
with bytes(), but for iterating over code points, you should be using
an UTF-8 iterator.
Furthermore, it has two nifty new features:
- String implements a small string optimization (SSO) for strings that
can fit entirely within a pointer. This means up to 3 bytes on 32-bit
platforms, and 7 bytes on 64-bit platforms. Such small strings will
not be heap-allocated.
- String can create substrings without making a deep copy of the
substring. Instead, the superstring gets +1 refcount from the
substring, and it acts like a view into the superstring. To make
substrings like this, use the substring_with_shared_superstring() API.
One caveat:
- String does not guarantee that the underlying data is null-terminated
like DeprecatedString does today. While this was nifty in a handful of
places where we were calling C functions, it did stand in the way of
shared-superstring substrings.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This patch adds the `USING_AK_GLOBALLY` macro which is enabled by
default, but can be overridden by build flags.
This is a step towards integrating Jakt and AK types.
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
Same as Vector, ByteBuffer now also signals allocation failure by
returning an ENOMEM Error instead of a bool, allowing us to use the
TRY() and MUST() patterns.
Currently, to append a UTF-16 view to a StringBuilder, callers must
first convert the view to UTF-8 and then append the copy. Add a UTF-16
overload so callers do not need to hold an entire copy in memory.
`append()` is almost never going to select the overload that is desired.
e.g. it will append chars when you pass it a Vector<size_t>, which is
definitely not the right overload :)
Previously ByteBuffer would internally hold a RefPtr to the byte
buffer and would behave like a reference type, i.e. copying a
ByteBuffer would not create a duplicate byte buffer, but rather
two objects which refer to the same internal buffer.
This also changes ByteBuffer so that it has some internal capacity
much like the Vector<T> type. Unlike Vector<T> however a byte
buffer's data may be uninitialized.
With this commit ByteBuffer makes use of the kmalloc_good_size()
API to pick an optimal allocation size for its internal buffer.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Problem:
- Many constructors are defined as `{}` rather than using the ` =
default` compiler-provided constructor.
- Some types provide an implicit conversion operator from `nullptr_t`
instead of requiring the caller to default construct. This violates
the C++ Core Guidelines suggestion to declare single-argument
constructors explicit
(https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit).
Solution:
- Change default constructors to use the compiler-provided default
constructor.
- Remove implicit conversion operators from `nullptr_t` and change
usage to enforce type consistency without conversion.
This patch adds a 128-byte inline buffer that we use before switching
to using a dynamically growing ByteBuffer.
This allows us to avoid heap allocations in many cases, and totally
incidentally also speeds up @nico's favorite test, "disasm /bin/id"
more than 2x. :^)
With this commit, <AK/Format.h> has a more supportive role and isn't
used directly.
Essentially, there now is a public 'vformat' function ('v' for vector)
which takes already type erased parameters. The name is choosen to
indicate that this function behaves similar to C-style functions taking
a va_list equivalent.
The interface for frontend users are now 'String::formatted' and
'StringBuilder::appendff'.
You can now #include <AK/Forward.h> to get most of the AK types as
forward declarations.
Header dependency explosion is one of the main contributors to compile
times at the moment, so this is a step towards smaller include graphs.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Using int was a mistake. This patch changes String, StringImpl,
StringView and StringBuilder to use size_t instead of int for lengths.
Obviously a lot of code needs to change as a result of this.
The former allows you to inspect the string while it's being built.
It's an explicit method rather than `operator StringView()` because
you must remember you can only look at it in between modifications;
appending to the StringBuilder invalidates the StringView.
The latter lets you clear the state of a StringBuilder explicitly, to
start from an empty string again.