AK: Turn ByteBuffer into a value type

Previously ByteBuffer would internally hold a RefPtr to the byte
buffer and would behave like a reference type, i.e. copying a
ByteBuffer would not create a duplicate byte buffer, but rather
two objects which refer to the same internal buffer.

This also changes ByteBuffer so that it has some internal capacity
much like the Vector<T> type. Unlike Vector<T> however a byte
buffer's data may be uninitialized.

With this commit ByteBuffer makes use of the kmalloc_good_size()
API to pick an optimal allocation size for its internal buffer.
This commit is contained in:
Gunnar Beutner 2021-05-14 20:53:04 +02:00 committed by Andreas Kling
parent f0fa51773a
commit fcaf98361f
Notes: sideshowbarker 2024-07-18 18:01:58 +09:00
9 changed files with 176 additions and 236 deletions

View file

@ -1,24 +0,0 @@
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
namespace AK {
bool ByteBuffer::operator==(const ByteBuffer& other) const
{
if (is_empty() != other.is_empty())
return false;
if (is_empty())
return true;
if (size() != other.size())
return false;
// So they both have data, and the same length.
return !__builtin_memcmp(data(), other.data(), size());
}
}

View file

@ -1,212 +1,180 @@
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/NonnullRefPtr.h>
#include <AK/RefCounted.h>
#include <AK/RefPtr.h>
#include <AK/Span.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
namespace Detail {
class ByteBufferImpl : public RefCounted<ByteBufferImpl> {
public:
static NonnullRefPtr<ByteBufferImpl> create_uninitialized(size_t size);
static NonnullRefPtr<ByteBufferImpl> create_zeroed(size_t);
static NonnullRefPtr<ByteBufferImpl> copy(const void*, size_t);
void operator delete(void* ptr)
{
kfree(ptr);
}
ByteBufferImpl() = delete;
u8& operator[](size_t i)
{
VERIFY(i < m_size);
return m_data[i];
}
const u8& operator[](size_t i) const
{
VERIFY(i < m_size);
return m_data[i];
}
bool is_empty() const { return !m_size; }
size_t size() const { return m_size; }
u8* data() { return m_data; }
const u8* data() const { return m_data; }
Bytes bytes() { return { data(), size() }; }
ReadonlyBytes bytes() const { return { data(), size() }; }
Span<u8> span() { return { data(), size() }; }
Span<const u8> span() const { return { data(), size() }; }
u8* offset_pointer(int offset) { return m_data + offset; }
const u8* offset_pointer(int offset) const { return m_data + offset; }
void* end_pointer() { return m_data + m_size; }
const void* end_pointer() const { return m_data + m_size; }
// NOTE: trim() does not reallocate.
void trim(size_t size)
{
VERIFY(size <= m_size);
m_size = size;
}
void zero_fill();
private:
explicit ByteBufferImpl(size_t);
size_t m_size { 0 };
u8 m_data[];
};
template<size_t inline_capacity>
class ByteBuffer {
public:
ByteBuffer() = default;
ByteBuffer(const ByteBuffer& other)
: m_impl(other.m_impl)
~ByteBuffer()
{
clear();
}
ByteBuffer(ByteBuffer const& other)
{
grow(other.size());
VERIFY(m_size == other.size());
VERIFY(!m_is_null);
__builtin_memcpy(data(), other.data(), other.size());
}
ByteBuffer(ByteBuffer&& other)
: m_impl(move(other.m_impl))
{
move_from(move(other));
}
ByteBuffer& operator=(ByteBuffer&& other)
{
if (this != &other)
m_impl = move(other.m_impl);
if (this != &other) {
if (!is_inline())
kfree(m_outline_buffer);
move_from(move(other));
}
return *this;
}
ByteBuffer& operator=(const ByteBuffer& other)
ByteBuffer& operator=(ByteBuffer const& other)
{
if (this != &other)
m_impl = other.m_impl;
if (this != &other) {
if (m_size > other.size())
internal_trim(other.size(), true);
else
grow(other.size());
__builtin_memcpy(data(), other.data(), other.size());
}
return *this;
}
[[nodiscard]] static ByteBuffer create_uninitialized(size_t size) { return ByteBuffer(ByteBufferImpl::create_uninitialized(size)); }
[[nodiscard]] static ByteBuffer create_zeroed(size_t size) { return ByteBuffer(ByteBufferImpl::create_zeroed(size)); }
[[nodiscard]] static ByteBuffer copy(const void* data, size_t size) { return ByteBuffer(ByteBufferImpl::copy(data, size)); }
[[nodiscard]] static ByteBuffer copy(ReadonlyBytes bytes) { return ByteBuffer(ByteBufferImpl::copy(bytes.data(), bytes.size())); }
[[nodiscard]] static ByteBuffer create_uninitialized(size_t size)
{
return ByteBuffer(size);
}
~ByteBuffer() { clear(); }
void clear() { m_impl = nullptr; }
[[nodiscard]] static ByteBuffer create_zeroed(size_t size)
{
auto buffer = create_uninitialized(size);
buffer.zero_fill();
VERIFY(size == 0 || (buffer[0] == 0 && buffer[size - 1] == 0));
return buffer;
}
[[nodiscard]] static ByteBuffer copy(void const* data, size_t size)
{
auto buffer = create_uninitialized(size);
__builtin_memcpy(buffer.data(), data, size);
return buffer;
}
[[nodiscard]] static ByteBuffer copy(ReadonlyBytes bytes)
{
return copy(bytes.data(), bytes.size());
}
template<size_t other_inline_capacity>
bool operator==(ByteBuffer<other_inline_capacity> const& other) const
{
if (size() != other.size())
return false;
// So they both have data, and the same length.
return !__builtin_memcmp(data(), other.data(), size());
}
bool operator!=(ByteBuffer const& other) const { return !(*this == other); }
operator bool() const { return !is_null(); }
bool operator!() const { return is_null(); }
[[nodiscard]] bool is_null() const { return m_impl == nullptr; }
// Disable default implementations that would use surprising integer promotion.
bool operator==(const ByteBuffer& other) const;
bool operator!=(const ByteBuffer& other) const { return !(*this == other); }
bool operator<=(const ByteBuffer& other) const = delete;
bool operator>=(const ByteBuffer& other) const = delete;
bool operator<(const ByteBuffer& other) const = delete;
bool operator>(const ByteBuffer& other) const = delete;
[[nodiscard]] bool is_null() const { return m_is_null; }
[[nodiscard]] u8& operator[](size_t i)
{
VERIFY(m_impl);
return (*m_impl)[i];
VERIFY(i < m_size);
return data()[i];
}
[[nodiscard]] u8 operator[](size_t i) const
[[nodiscard]] u8 const& operator[](size_t i) const
{
VERIFY(m_impl);
return (*m_impl)[i];
}
[[nodiscard]] bool is_empty() const { return !m_impl || m_impl->is_empty(); }
[[nodiscard]] size_t size() const { return m_impl ? m_impl->size() : 0; }
[[nodiscard]] u8* data() { return m_impl ? m_impl->data() : nullptr; }
[[nodiscard]] const u8* data() const { return m_impl ? m_impl->data() : nullptr; }
[[nodiscard]] Bytes bytes()
{
if (m_impl) {
return m_impl->bytes();
}
return {};
}
[[nodiscard]] ReadonlyBytes bytes() const
{
if (m_impl) {
return m_impl->bytes();
}
return {};
VERIFY(i < m_size);
return data()[i];
}
[[nodiscard]] Span<u8> span()
{
if (m_impl) {
return m_impl->span();
}
return {};
}
[[nodiscard]] Span<const u8> span() const
{
if (m_impl) {
return m_impl->span();
}
return {};
}
[[nodiscard]] bool is_empty() const { return !m_size; }
[[nodiscard]] size_t size() const { return m_size; }
[[nodiscard]] u8* offset_pointer(int offset) { return m_impl ? m_impl->offset_pointer(offset) : nullptr; }
[[nodiscard]] const u8* offset_pointer(int offset) const { return m_impl ? m_impl->offset_pointer(offset) : nullptr; }
[[nodiscard]] u8* data() { return is_inline() ? m_inline_buffer : m_outline_buffer; }
[[nodiscard]] u8 const* data() const { return is_inline() ? m_inline_buffer : m_outline_buffer; }
[[nodiscard]] void* end_pointer() { return m_impl ? m_impl->end_pointer() : nullptr; }
[[nodiscard]] const void* end_pointer() const { return m_impl ? m_impl->end_pointer() : nullptr; }
[[nodiscard]] Bytes bytes() { return { data(), size() }; }
[[nodiscard]] ReadonlyBytes bytes() const { return { data(), size() }; }
[[nodiscard]] ByteBuffer isolated_copy() const
{
if (!m_impl)
return {};
return copy(m_impl->data(), m_impl->size());
}
[[nodiscard]] AK::Span<u8> span() { return { data(), size() }; }
[[nodiscard]] AK::Span<const u8> span() const { return { data(), size() }; }
[[nodiscard]] u8* offset_pointer(int offset) { return data() + offset; }
[[nodiscard]] u8 const* offset_pointer(int offset) const { return data() + offset; }
[[nodiscard]] void* end_pointer() { return data() + m_size; }
[[nodiscard]] void const* end_pointer() const { return data() + m_size; }
// NOTE: trim() does not reallocate.
void trim(size_t size)
{
if (m_impl)
m_impl->trim(size);
internal_trim(size, false);
}
[[nodiscard]] ByteBuffer slice(size_t offset, size_t size) const
{
if (is_null())
return {};
if (offset == 0 && size == this->size())
return *this;
// I cannot hand you a slice I don't have
VERIFY(offset + size <= this->size());
return copy(offset_pointer(offset), size);
}
void grow(size_t size)
void clear()
{
if (m_impl && size < m_impl->size())
return;
auto new_impl = ByteBufferImpl::create_uninitialized(size);
if (m_impl)
__builtin_memcpy(new_impl->data(), m_impl->data(), m_impl->size());
m_impl = new_impl;
if (!is_inline())
kfree(m_outline_buffer);
m_size = 0;
}
void append(const void* data, size_t data_size)
void grow(size_t new_size)
{
m_is_null = false;
if (new_size <= m_size)
return;
if (new_size <= capacity()) {
m_size = new_size;
return;
}
u8* new_buffer;
auto new_capacity = kmalloc_good_size(new_size);
if (!is_inline()) {
new_buffer = (u8*)krealloc(m_outline_buffer, new_capacity);
VERIFY(new_buffer);
} else {
new_buffer = (u8*)kmalloc(new_capacity);
VERIFY(new_buffer);
__builtin_memcpy(new_buffer, data(), m_size);
}
m_outline_buffer = new_buffer;
m_outline_capacity = new_capacity;
m_size = new_size;
}
void append(void const* data, size_t data_size)
{
if (data_size == 0)
return;
@ -216,12 +184,12 @@ public:
__builtin_memcpy(this->data() + old_size, data, data_size);
}
void operator+=(const ByteBuffer& other)
void operator+=(ByteBuffer const& other)
{
append(other.data(), other.size());
}
void overwrite(size_t offset, const void* data, size_t data_size)
void overwrite(size_t offset, void const* data, size_t data_size)
{
// make sure we're not told to write past the end
VERIFY(offset + data_size <= size());
@ -230,53 +198,59 @@ public:
void zero_fill()
{
m_impl->zero_fill();
__builtin_memset(data(), 0, m_size);
}
operator Bytes() { return bytes(); }
operator ReadonlyBytes() const { return bytes(); }
private:
explicit ByteBuffer(RefPtr<ByteBufferImpl>&& impl)
: m_impl(move(impl))
ByteBuffer(size_t size)
{
grow(size);
VERIFY(!m_is_null);
VERIFY(m_size == size);
}
RefPtr<ByteBufferImpl> m_impl;
void move_from(ByteBuffer&& other)
{
m_is_null = other.m_is_null;
m_size = other.m_size;
if (other.m_size > inline_capacity) {
m_outline_buffer = other.m_outline_buffer;
m_outline_capacity = other.m_outline_capacity;
} else
__builtin_memcpy(m_inline_buffer, other.m_inline_buffer, other.m_size);
other.m_is_null = true;
other.m_size = 0;
}
void internal_trim(size_t size, bool may_discard_existing_data)
{
VERIFY(size <= m_size);
if (!is_inline() && size <= inline_capacity) {
// m_inline_buffer and m_outline_buffer are part of a union, so save the pointer
auto outline_buffer = m_outline_buffer;
if (!may_discard_existing_data)
__builtin_memcpy(m_inline_buffer, outline_buffer, size);
kfree(outline_buffer);
}
m_size = size;
}
bool is_inline() const { return m_size <= inline_capacity; }
size_t capacity() const { return is_inline() ? inline_capacity : m_outline_capacity; }
size_t m_size { 0 };
bool m_is_null { true };
union {
u8 m_inline_buffer[inline_capacity];
struct {
u8* m_outline_buffer;
size_t m_outline_capacity;
};
};
};
inline ByteBufferImpl::ByteBufferImpl(size_t size)
: m_size(size)
{
}
inline void ByteBufferImpl::zero_fill()
{
__builtin_memset(m_data, 0, m_size);
}
inline NonnullRefPtr<ByteBufferImpl> ByteBufferImpl::create_uninitialized(size_t size)
{
auto* buffer = kmalloc(sizeof(ByteBufferImpl) + size);
VERIFY(buffer);
return ::adopt_ref(*new (buffer) ByteBufferImpl(size));
}
inline NonnullRefPtr<ByteBufferImpl> ByteBufferImpl::create_zeroed(size_t size)
{
auto buffer = create_uninitialized(size);
if (size != 0)
__builtin_memset(buffer->data(), 0, size);
return buffer;
}
inline NonnullRefPtr<ByteBufferImpl> ByteBufferImpl::copy(const void* data, size_t size)
{
auto buffer = create_uninitialized(size);
__builtin_memcpy(buffer->data(), data, size);
return buffer;
}
}
using AK::ByteBuffer;

View file

@ -10,8 +10,13 @@
namespace AK {
class Bitmap;
namespace Detail {
template<size_t inline_capacity>
class ByteBuffer;
}
class Bitmap;
using ByteBuffer = AK::Detail::ByteBuffer<32>;
class IPv4Address;
class JsonArray;
class JsonObject;

View file

@ -21,23 +21,12 @@ inline void StringBuilder::will_append(size_t size)
Checked<size_t> needed_capacity = m_length;
needed_capacity += size;
VERIFY(!needed_capacity.has_overflow());
if (needed_capacity < inline_capacity)
return;
Checked<size_t> expanded_capacity = needed_capacity;
expanded_capacity *= 2;
VERIFY(!expanded_capacity.has_overflow());
if (m_buffer.is_null()) {
m_buffer.grow(expanded_capacity.value());
memcpy(m_buffer.data(), m_inline_buffer, m_length);
} else if (needed_capacity.value() > m_buffer.size()) {
m_buffer.grow(expanded_capacity.value());
}
m_buffer.grow(needed_capacity.value());
}
StringBuilder::StringBuilder(size_t initial_capacity)
: m_buffer(decltype(m_buffer)::create_uninitialized(initial_capacity))
{
if (initial_capacity > inline_capacity)
m_buffer.grow(initial_capacity);
}
void StringBuilder::append(const StringView& str)
@ -94,7 +83,6 @@ StringView StringBuilder::string_view() const
void StringBuilder::clear()
{
m_buffer.clear();
m_inline_buffer[0] = '\0';
m_length = 0;
}

View file

@ -62,13 +62,11 @@ public:
private:
void will_append(size_t);
u8* data() { return m_buffer.is_null() ? m_inline_buffer : m_buffer.data(); }
const u8* data() const { return m_buffer.is_null() ? m_inline_buffer : m_buffer.data(); }
bool using_inline_buffer() const { return m_buffer.is_null(); }
u8* data() { return m_buffer.data(); }
const u8* data() const { return m_buffer.data(); }
static constexpr size_t inline_capacity = 128;
u8 m_inline_buffer[inline_capacity];
ByteBuffer m_buffer;
AK::Detail::ByteBuffer<inline_capacity> m_buffer;
size_t m_length { 0 };
};

View file

@ -256,7 +256,6 @@ set(KERNEL_SOURCES
)
set(AK_SOURCES
../AK/ByteBuffer.cpp
../AK/FlyString.cpp
../AK/GenericLexer.cpp
../AK/Hex.cpp

View file

@ -55,7 +55,7 @@ static bool test_single(const Testcase& testcase)
// Setup
ByteBuffer actual = ByteBuffer::create_uninitialized(SANDBOX_CANARY_SIZE + testcase.dest_n + SANDBOX_CANARY_SIZE);
fill_with_random(actual.data(), actual.size());
ByteBuffer expected = actual.isolated_copy();
ByteBuffer expected = actual;
VERIFY(actual.offset_pointer(0) != expected.offset_pointer(0));
actual.overwrite(SANDBOX_CANARY_SIZE, testcase.dest, testcase.dest_n);
expected.overwrite(SANDBOX_CANARY_SIZE, testcase.dest_expected, testcase.dest_expected_n);

View file

@ -57,7 +57,7 @@ static bool test_single(const Testcase& testcase)
// Setup
ByteBuffer actual = ByteBuffer::create_uninitialized(SANDBOX_CANARY_SIZE + testcase.dest_n + SANDBOX_CANARY_SIZE);
fill_with_random(actual.data(), actual.size());
ByteBuffer expected = actual.isolated_copy();
ByteBuffer expected = actual;
VERIFY(actual.offset_pointer(0) != expected.offset_pointer(0));
actual.overwrite(SANDBOX_CANARY_SIZE, testcase.dest, testcase.dest_n);
expected.overwrite(SANDBOX_CANARY_SIZE, testcase.dest_expected, testcase.dest_expected_n);

View file

@ -169,7 +169,7 @@ void HexEditorWidget::initialize_menubar(GUI::Menubar& menubar)
}));
edit_menu.add_separator();
edit_menu.add_action(GUI::Action::create("&Find", { Mod_Ctrl, Key_F }, Gfx::Bitmap::load_from_file("/res/icons/16x16/find.png"), [&](const GUI::Action&) {
auto old_buffer = m_search_buffer.isolated_copy();
auto old_buffer = m_search_buffer;
if (FindDialog::show(window(), m_search_text, m_search_buffer) == GUI::InputBox::ExecOK) {
bool same_buffers = false;