mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 17:10:23 +00:00
LibTest: Add a library of Generators
These functions all plug into RandomnessSource and produce random values of various types. They are to be used either inside other generator definitions or inside the GEN(...) macro when used in tests.
This commit is contained in:
parent
7e5a3650fe
commit
99e2d42a53
Notes:
sideshowbarker
2024-07-17 08:25:15 +09:00
Author: https://github.com/Janiczek Commit: https://github.com/SerenityOS/serenity/commit/99e2d42a53 Pull-request: https://github.com/SerenityOS/serenity/pull/21191 Reviewed-by: https://github.com/ADKaster Reviewed-by: https://github.com/alimpfard Reviewed-by: https://github.com/timschumi
1 changed files with 333 additions and 0 deletions
333
Userland/Libraries/LibTest/Randomized/Generator.h
Normal file
333
Userland/Libraries/LibTest/Randomized/Generator.h
Normal file
|
@ -0,0 +1,333 @@
|
|||
/*
|
||||
* Copyright (c) 2023, Martin Janiczek <martin@janiczek.cz>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <LibTest/Macros.h>
|
||||
#include <LibTest/Randomized/RandomRun.h>
|
||||
|
||||
#include <AK/Function.h>
|
||||
#include <AK/Random.h>
|
||||
#include <AK/String.h>
|
||||
#include <AK/StringView.h>
|
||||
#include <AK/Tuple.h>
|
||||
|
||||
namespace Test {
|
||||
namespace Randomized {
|
||||
|
||||
// Returns a random double value in range 0..1.
|
||||
inline double get_random_probability()
|
||||
{
|
||||
static constexpr u32 max_u32 = NumericLimits<u32>::max();
|
||||
u32 random_u32 = AK::get_random_uniform(max_u32);
|
||||
return static_cast<double>(random_u32) / static_cast<double>(max_u32);
|
||||
}
|
||||
|
||||
// Generators take random bits from the RandomnessSource and return a value
|
||||
// back.
|
||||
//
|
||||
// Example:
|
||||
// - Gen::u32(5,10) --> 9, 7, 5, 10, 8, ...
|
||||
namespace Gen {
|
||||
|
||||
// An unsigned integer generator.
|
||||
//
|
||||
// The minimum value will always be 0.
|
||||
// The maximum value is given by user in the argument.
|
||||
//
|
||||
// Gen::unsigned_int(10) -> value 5, RandomRun [5]
|
||||
// -> value 8, RandomRun [8]
|
||||
// etc.
|
||||
//
|
||||
// Shrinks towards 0.
|
||||
inline u32 unsigned_int(u32 max)
|
||||
{
|
||||
u32 random = Test::randomness_source().draw_value(max, [&]() {
|
||||
return AK::get_random_uniform(max + 1);
|
||||
});
|
||||
return random;
|
||||
}
|
||||
|
||||
// An unsigned integer generator in a particular range.
|
||||
//
|
||||
// Gen::unsigned_int(3,10) -> value 3, RandomRun [0]
|
||||
// -> value 8, RandomRun [5]
|
||||
// -> value 10, RandomRun [7]
|
||||
// etc.
|
||||
//
|
||||
// In case `min == max`, the RandomRun footprint will be smaller, as we'll
|
||||
// switch to a `constant` and won't need any randomness to generate that
|
||||
// value:
|
||||
//
|
||||
// Gen::unsigned_int(3,3) -> value 3, RandomRun [] (always)
|
||||
//
|
||||
// Shrinks towards the smaller argument.
|
||||
inline u32 unsigned_int(u32 min, u32 max)
|
||||
{
|
||||
VERIFY(max >= min);
|
||||
if (min == max) {
|
||||
return min;
|
||||
}
|
||||
return unsigned_int(max - min) + min;
|
||||
}
|
||||
|
||||
// Randomly (uniformly) selects a value out of the given arguments.
|
||||
//
|
||||
// Gen::one_of(20,5,10) --> value 20, RandomRun [0]
|
||||
// --> value 5, RandomRun [1]
|
||||
// --> value 10, RandomRun [2]
|
||||
//
|
||||
// Shrinks towards the earlier arguments (above, towards 20).
|
||||
template<typename... Ts>
|
||||
requires(sizeof...(Ts) > 0)
|
||||
CommonType<Ts...> one_of(Ts... choices)
|
||||
{
|
||||
Vector<CommonType<Ts...>> choices_vec { choices... };
|
||||
|
||||
constexpr size_t count = sizeof...(choices);
|
||||
size_t i = unsigned_int(count - 1);
|
||||
return choices_vec[i];
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
struct Choice {
|
||||
i32 weight;
|
||||
T value;
|
||||
};
|
||||
// Workaround for clang bug fixed in clang 17
|
||||
template<typename T>
|
||||
Choice(i32, T) -> Choice<T>;
|
||||
|
||||
// Randomly (uniformly) selects a value out of the given weighted arguments.
|
||||
//
|
||||
// Gen::frequency(
|
||||
// Gen::Choice {5,999},
|
||||
// Gen::Choice {1,111},
|
||||
// )
|
||||
// --> value 999 (5 out of 6 times), RandomRun [0]
|
||||
// --> value 111 (1 out of 6 times), RandomRun [1]
|
||||
//
|
||||
// Shrinks towards the earlier arguments (above, towards 'x').
|
||||
template<typename... Ts>
|
||||
requires(sizeof...(Ts) > 0)
|
||||
CommonType<Ts...> frequency(Choice<Ts>... choices)
|
||||
{
|
||||
Vector<Choice<CommonType<Ts...>>> choices_vec { choices... };
|
||||
|
||||
u32 sum = 0;
|
||||
for (auto const& choice : choices_vec) {
|
||||
VERIFY(choice.weight > 0);
|
||||
sum += static_cast<u32>(choice.weight);
|
||||
}
|
||||
|
||||
u32 target = unsigned_int(sum);
|
||||
size_t i = 0;
|
||||
for (auto const& choice : choices_vec) {
|
||||
u32 weight = static_cast<u32>(choice.weight);
|
||||
if (weight >= target) {
|
||||
return choice.value;
|
||||
}
|
||||
target -= weight;
|
||||
++i;
|
||||
}
|
||||
return choices_vec[i - 1].value;
|
||||
}
|
||||
|
||||
// An unsigned integer generator in the full u32 range.
|
||||
//
|
||||
// 8/17 (47%) of the time it will bias towards 8bit numbers,
|
||||
// 4/17 (23%) towards 4bit numbers,
|
||||
// 2/17 (12%) towards 16bit numbers,
|
||||
// 1/17 (6%) towards 32bit numbers,
|
||||
// 2/17 (12%) towards edge cases like 0 and NumericLimits::max() of various unsigned int types.
|
||||
//
|
||||
// Gen::unsigned_int() -> value 3, RandomRun [0,3]
|
||||
// -> value 8, RandomRun [1,8]
|
||||
// -> value 100, RandomRun [2,100]
|
||||
// -> value 5, RandomRun [3,5]
|
||||
// -> value 255, RandomRun [4,1]
|
||||
// -> value 65535, RandomRun [4,2]
|
||||
// etc.
|
||||
//
|
||||
// Shrinks towards 0.
|
||||
inline u32 unsigned_int()
|
||||
{
|
||||
u32 bits = frequency(
|
||||
// weight, bits
|
||||
Choice { 4, 4 },
|
||||
Choice { 8, 8 },
|
||||
Choice { 2, 16 },
|
||||
Choice { 1, 32 },
|
||||
Choice { 2, 0 });
|
||||
|
||||
// The special cases go last as they can be the most extreme (large) values.
|
||||
|
||||
if (bits == 0) {
|
||||
// Special cases, eg. max integers for u8, u16, u32.
|
||||
return one_of(
|
||||
0U,
|
||||
NumericLimits<u8>::max(),
|
||||
NumericLimits<u16>::max(),
|
||||
NumericLimits<u32>::max());
|
||||
}
|
||||
|
||||
u32 max = (bits == 32)
|
||||
? NumericLimits<u32>::max()
|
||||
: ((u64)1 << bits) - 1;
|
||||
return unsigned_int(max);
|
||||
}
|
||||
|
||||
// A generator returning `true` with the given `probability` (0..1).
|
||||
//
|
||||
// If probability <= 0, doesn't use any randomness and returns false.
|
||||
// If probability >= 1, doesn't use any randomness and returns true.
|
||||
//
|
||||
// In general case:
|
||||
// Gen::weighted_boolean(0.75)
|
||||
// -> value false, RandomRun [0]
|
||||
// -> value true, RandomRun [1]
|
||||
//
|
||||
// Shrinks towards false.
|
||||
inline bool weighted_boolean(double probability)
|
||||
{
|
||||
if (probability <= 0)
|
||||
return false;
|
||||
if (probability >= 1)
|
||||
return true;
|
||||
|
||||
u32 random_int = Test::randomness_source().draw_value(1, [&]() {
|
||||
double drawn_probability = get_random_probability();
|
||||
return drawn_probability <= probability ? 1 : 0;
|
||||
});
|
||||
bool random_bool = random_int == 1;
|
||||
return random_bool;
|
||||
}
|
||||
|
||||
// A (fair) boolean generator.
|
||||
//
|
||||
// Gen::boolean()
|
||||
// -> value false, RandomRun [0]
|
||||
// -> value true, RandomRun [1]
|
||||
//
|
||||
// Shrinks towards false.
|
||||
inline bool boolean()
|
||||
{
|
||||
return weighted_boolean(0.5);
|
||||
}
|
||||
|
||||
// A vector generator of a random length between the given limits.
|
||||
//
|
||||
// Gen::vector(2,3,[]() { return Gen::unsigned_int(5); })
|
||||
// -> value [1,5], RandomRun [1,1,1,5,0]
|
||||
// -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
|
||||
// etc.
|
||||
//
|
||||
// In case `min == max`, the RandomRun footprint will be smaller, as there will
|
||||
// be no randomness involved in figuring out the length:
|
||||
//
|
||||
// Gen::vector(3,3,[]() { return Gen::unsigned_int(5); })
|
||||
// -> value [1,3], RandomRun [1,3]
|
||||
// -> value [5,2], RandomRun [5,2]
|
||||
// etc.
|
||||
//
|
||||
// Shrinks towards shorter vectors, with simpler elements inside.
|
||||
template<typename Fn>
|
||||
inline Vector<InvokeResult<Fn>> vector(size_t min, size_t max, Fn item_gen)
|
||||
{
|
||||
VERIFY(max >= min);
|
||||
|
||||
size_t size = 0;
|
||||
Vector<InvokeResult<Fn>> acc;
|
||||
|
||||
// Special case: no randomness for the boolean
|
||||
if (min == max) {
|
||||
while (size < min) {
|
||||
acc.append(item_gen());
|
||||
++size;
|
||||
}
|
||||
return acc;
|
||||
}
|
||||
|
||||
// General case: before each item we "flip a coin" to decide whether to
|
||||
// generate another one.
|
||||
//
|
||||
// This algorithm is used instead of the more intuitive "generate length,
|
||||
// then generate that many items" algorithm, because it produces RandomRun
|
||||
// patterns that shrink more easily.
|
||||
//
|
||||
// See the Hypothesis paper [1], section 3.3, around the paragraph starting
|
||||
// with "More commonly".
|
||||
//
|
||||
// [1]: https://drops.dagstuhl.de/opus/volltexte/2020/13170/pdf/LIPIcs-ECOOP-2020-13.pdf
|
||||
while (size < min) {
|
||||
acc.append(item_gen());
|
||||
++size;
|
||||
}
|
||||
|
||||
double average = static_cast<double>(min + max) / 2.0;
|
||||
VERIFY(average > 0);
|
||||
|
||||
// A geometric distribution: https://en.wikipedia.org/wiki/Geometric_distribution#Moments_and_cumulants
|
||||
// The below derives from the E(X) = 1/p formula.
|
||||
//
|
||||
// We need to flip the `p` to `1-p` as our success ("another item!") is
|
||||
// a "failure" in the geometric distribution's interpretation ("we fail X
|
||||
// times before succeeding the first time").
|
||||
//
|
||||
// That gives us `1 - 1/p`. Then, E(X) also contains the final success, so we
|
||||
// need to say `1 + average` instead of `average`, as it will mean "our X
|
||||
// items + the final failure that stops the process".
|
||||
double probability = 1.0 - 1.0 / (1.0 + average);
|
||||
|
||||
while (size < max) {
|
||||
if (weighted_boolean(probability)) {
|
||||
acc.append(item_gen());
|
||||
++size;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return acc;
|
||||
}
|
||||
|
||||
// A vector generator of a given length.
|
||||
//
|
||||
// Gen::vector_of_length(3,[]() { return Gen::unsigned_int(5); })
|
||||
// -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
|
||||
// -> value [2,9,3], RandomRun [1,2,1,9,1,3,0]
|
||||
// etc.
|
||||
//
|
||||
// Shrinks towards shorter vectors, with simpler elements inside.
|
||||
template<typename Fn>
|
||||
inline Vector<InvokeResult<Fn>> vector(size_t length, Fn item_gen)
|
||||
{
|
||||
return vector(length, length, item_gen);
|
||||
}
|
||||
|
||||
// A vector generator of a random length between 0 and 32 elements.
|
||||
//
|
||||
// If you need a different length, use vector(max,item_gen) or
|
||||
// vector(min,max,item_gen).
|
||||
//
|
||||
// Gen::vector([]() { return Gen::unsigned_int(5); })
|
||||
// -> value [], RandomRun [0]
|
||||
// -> value [1], RandomRun [1,1,0]
|
||||
// -> value [1,5], RandomRun [1,1,1,5,0]
|
||||
// -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
|
||||
// -> value [1,5,0,2], RandomRun [1,1,1,5,1,0,1,2,0]
|
||||
// etc.
|
||||
//
|
||||
// Shrinks towards shorter vectors, with simpler elements inside.
|
||||
template<typename Fn>
|
||||
inline Vector<InvokeResult<Fn>> vector(Fn item_gen)
|
||||
{
|
||||
return vector(0, 32, item_gen);
|
||||
}
|
||||
|
||||
} // namespace Gen
|
||||
} // namespace Randomized
|
||||
} // namespace Test
|
Loading…
Reference in a new issue