LibGfx: Delete unused DisjointRectSet
Some checks are pending
CI / Lagom (false, FUZZ, ubuntu-24.04, Linux, Clang) (push) Waiting to run
CI / Lagom (false, NO_FUZZ, macos-15, macOS, Clang) (push) Waiting to run
CI / Lagom (false, NO_FUZZ, ubuntu-24.04, Linux, GNU) (push) Waiting to run
CI / Lagom (true, NO_FUZZ, ubuntu-24.04, Linux, Clang) (push) Waiting to run
Package the js repl as a binary artifact / build-and-package (macos-14, macOS, macOS-universal2) (push) Waiting to run
Package the js repl as a binary artifact / build-and-package (ubuntu-24.04, Linux, Linux-x86_64) (push) Waiting to run
Run test262 and test-wasm / run_and_update_results (push) Waiting to run
Lint Code / lint (push) Waiting to run
Push notes / build (push) Waiting to run

This commit is contained in:
Aliaksandr Kalenik 2024-11-11 01:21:28 +01:00 committed by Alexander Kalenik
parent 1e05457cd1
commit 7460f0c6e2
Notes: github-actions[bot] 2024-11-11 01:47:28 +00:00
3 changed files with 0 additions and 299 deletions

View file

@ -1,292 +0,0 @@
/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Vector.h>
#include <LibGfx/Point.h>
#include <LibGfx/Rect.h>
namespace Gfx {
template<typename T>
class DisjointRectSet {
public:
DisjointRectSet(DisjointRectSet const&) = delete;
DisjointRectSet& operator=(DisjointRectSet const&) = delete;
DisjointRectSet() = default;
~DisjointRectSet() = default;
DisjointRectSet(Rect<T> const& rect)
{
m_rects.append(rect);
}
DisjointRectSet(DisjointRectSet&&) = default;
DisjointRectSet& operator=(DisjointRectSet&&) = default;
DisjointRectSet clone() const
{
DisjointRectSet rects;
rects.m_rects = m_rects;
return rects;
}
void move_by(T dx, T dy)
{
for (auto& r : m_rects)
r.translate_by(dx, dy);
}
void move_by(Point<T> const& delta)
{
move_by(delta.x(), delta.y());
}
void add(Rect<T> const& rect)
{
if (add_no_shatter(rect) && m_rects.size() > 1)
shatter();
}
template<typename Container>
void add_many(Container const& rects)
{
bool added = false;
for (auto const& rect : rects) {
if (add_no_shatter(rect))
added = true;
}
if (added && m_rects.size() > 1)
shatter();
}
void add(DisjointRectSet const& rect_set)
{
if (this == &rect_set)
return;
if (m_rects.is_empty()) {
m_rects = rect_set.m_rects;
} else {
add_many(rect_set.rects());
}
}
DisjointRectSet shatter(Rect<T> const& hammer) const
{
if (hammer.is_empty())
return clone();
DisjointRectSet shards;
for (auto& rect : m_rects) {
for (auto& shard : rect.shatter(hammer))
shards.add_no_shatter(shard);
}
// Since there should be no overlaps, we don't need to call shatter()
return shards;
}
DisjointRectSet shatter(DisjointRectSet const& hammer) const
{
if (this == &hammer)
return {};
if (hammer.is_empty() || !intersects(hammer))
return clone();
// TODO: This could use some optimization
DisjointRectSet shards = shatter(hammer.m_rects[0]);
auto rects_count = hammer.m_rects.size();
for (size_t i = 1; i < rects_count && !shards.is_empty(); i++) {
if (hammer.m_rects[i].intersects(shards.m_rects)) {
auto shattered = shards.shatter(hammer.m_rects[i]);
shards = move(shattered);
}
}
// Since there should be no overlaps, we don't need to call shatter()
return shards;
}
bool contains(Rect<T> const& rect) const
{
if (is_empty() || rect.is_empty())
return false;
// TODO: This could use some optimization
DisjointRectSet remainder(rect);
for (auto& r : m_rects) {
auto shards = remainder.shatter(r);
if (shards.is_empty())
return true;
remainder = move(shards);
}
return false;
}
bool intersects(Rect<T> const& rect) const
{
for (auto& r : m_rects) {
if (r.intersects(rect))
return true;
}
return false;
}
bool intersects(DisjointRectSet const& rects) const
{
if (this == &rects)
return true;
for (auto& r : m_rects) {
for (auto& r2 : rects.m_rects) {
if (r.intersects(r2))
return true;
}
}
return false;
}
DisjointRectSet intersected(Rect<T> const& rect) const
{
DisjointRectSet intersected_rects;
intersected_rects.m_rects.ensure_capacity(m_rects.capacity());
for (auto& r : m_rects) {
auto intersected_rect = r.intersected(rect);
if (!intersected_rect.is_empty())
intersected_rects.m_rects.append(intersected_rect);
}
// Since there should be no overlaps, we don't need to call shatter()
return intersected_rects;
}
DisjointRectSet intersected(DisjointRectSet const& rects) const
{
if (&rects == this)
return clone();
if (is_empty() || rects.is_empty())
return {};
DisjointRectSet intersected_rects;
intersected_rects.m_rects.ensure_capacity(m_rects.capacity());
for (auto& r : m_rects) {
for (auto& r2 : rects.m_rects) {
auto intersected_rect = r.intersected(r2);
if (!intersected_rect.is_empty())
intersected_rects.m_rects.append(intersected_rect);
}
}
// Since there should be no overlaps, we don't need to call shatter()
return intersected_rects;
}
template<typename Function>
IterationDecision for_each_intersected(Rect<T> const& rect, Function f) const
{
if (is_empty() || rect.is_empty())
return IterationDecision::Continue;
for (auto& r : m_rects) {
auto intersected_rect = r.intersected(rect);
if (intersected_rect.is_empty())
continue;
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<typename Function>
IterationDecision for_each_intersected(DisjointRectSet const& rects, Function f) const
{
if (is_empty() || rects.is_empty())
return IterationDecision::Continue;
if (this == &rects) {
for (auto& r : m_rects) {
IterationDecision decision = f(r);
if (decision != IterationDecision::Continue)
return decision;
}
} else {
for (auto& r : m_rects) {
for (auto& r2 : rects.m_rects) {
auto intersected_rect = r.intersected(r2);
if (intersected_rect.is_empty())
continue;
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
}
}
return IterationDecision::Continue;
}
bool is_empty() const { return m_rects.is_empty(); }
size_t size() const { return m_rects.size(); }
void clear() { m_rects.clear(); }
void clear_with_capacity() { m_rects.clear_with_capacity(); }
Vector<Rect<T>, 32> const& rects() const { return m_rects; }
Vector<Rect<T>, 32> take_rects() { return move(m_rects); }
void translate_by(T dx, T dy)
{
for (auto& rect : m_rects)
rect.translate_by(dx, dy);
}
void translate_by(Point<T> const& delta)
{
for (auto& rect : m_rects)
rect.translate_by(delta);
}
private:
bool add_no_shatter(Rect<T> const& new_rect)
{
if (new_rect.is_empty())
return false;
for (auto& rect : m_rects) {
if (rect.contains(new_rect))
return false;
}
m_rects.append(new_rect);
return true;
}
void shatter()
{
Vector<Rect<T>, 32> output;
output.ensure_capacity(m_rects.size());
bool pass_had_intersections = false;
do {
pass_had_intersections = false;
output.clear_with_capacity();
for (size_t i = 0; i < m_rects.size(); ++i) {
auto& r1 = m_rects[i];
for (size_t j = 0; j < m_rects.size(); ++j) {
if (i == j)
continue;
auto& r2 = m_rects[j];
if (!r1.intersects(r2))
continue;
pass_had_intersections = true;
auto pieces = r1.shatter(r2);
for (auto& piece : pieces)
output.append(piece);
m_rects.remove(i);
for (; i < m_rects.size(); ++i)
output.append(m_rects[i]);
goto next_pass;
}
output.append(r1);
}
next_pass:
swap(output, m_rects);
} while (pass_had_intersections);
}
Vector<Rect<T>, 32> m_rects;
};
}

View file

@ -13,9 +13,6 @@ class CMYKBitmap;
class ImmutableBitmap;
class Color;
template<typename T>
class DisjointRectSet;
class Emoji;
class Font;
class ImageDecoder;
@ -51,9 +48,6 @@ class Rect;
template<typename T>
class Quad;
using DisjointIntRectSet = DisjointRectSet<int>;
using DisjointFloatRectSet = DisjointRectSet<float>;
using IntLine = Line<int>;
using FloatLine = Line<float>;

View file

@ -6,7 +6,6 @@
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibGfx/DisjointRectSet.h>
#include <LibWeb/Painting/BorderPainting.h>
#include <LibWeb/Painting/BorderRadiusCornerClipper.h>
#include <LibWeb/Painting/PaintBoxShadowParams.h>