ladybird/Userland/Libraries/LibGfx/ImageFormats/JPEGXLLoader.cpp

2732 lines
88 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2023, Lucas Chollet <lucas.chollet@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BitStream.h>
#include <AK/Endian.h>
#include <AK/FixedArray.h>
#include <AK/String.h>
#include <LibCompress/Brotli.h>
#include <LibGfx/ImageFormats/ExifOrientedBitmap.h>
#include <LibGfx/ImageFormats/JPEGXLLoader.h>
namespace Gfx {
/// 4.2 - Functions
static ALWAYS_INLINE i32 unpack_signed(u32 u)
{
if (u % 2 == 0)
return static_cast<i32>(u / 2);
return -static_cast<i32>((u + 1) / 2);
}
///
/// B.2 - Field types
// This is defined as a macro in order to get lazy-evaluated parameter
// Note that the lambda will capture your context by reference.
#define U32(d0, d1, d2, d3) \
({ \
u8 const selector = TRY(stream.read_bits(2)); \
auto value = [&, selector]() -> ErrorOr<u32> { \
if (selector == 0) \
return (d0); \
if (selector == 1) \
return (d1); \
if (selector == 2) \
return (d2); \
if (selector == 3) \
return (d3); \
VERIFY_NOT_REACHED(); \
}(); \
TRY(value); \
})
static ALWAYS_INLINE ErrorOr<u64> U64(LittleEndianInputBitStream& stream)
{
u8 const selector = TRY(stream.read_bits(2));
if (selector == 0)
return 0;
if (selector == 1)
return 1 + TRY(stream.read_bits(4));
if (selector == 2)
return 17 + TRY(stream.read_bits(8));
VERIFY(selector == 3);
u64 value = TRY(stream.read_bits(12));
u8 shift = 12;
while (TRY(stream.read_bits(1)) == 1) {
if (shift == 60) {
value += TRY(stream.read_bits(4)) << shift;
break;
}
value += TRY(stream.read_bits(8)) << shift;
shift += 8;
}
return value;
}
template<Enum E>
ErrorOr<E> read_enum(LittleEndianInputBitStream& stream)
{
return static_cast<E>(U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(6))));
}
// This is not specified
static ErrorOr<String> read_string(LittleEndianInputBitStream& stream)
{
auto const name_length = U32(0, TRY(stream.read_bits(4)), 16 + TRY(stream.read_bits(5)), 48 + TRY(stream.read_bits(10)));
auto string_buffer = TRY(FixedArray<u8>::create(name_length));
TRY(stream.read_until_filled(string_buffer.span()));
return String::from_utf8(StringView { string_buffer.span() });
}
///
/// D.2 - Image dimensions
struct SizeHeader {
u32 height {};
u32 width {};
};
static u32 aspect_ratio(u32 height, u32 ratio)
{
if (ratio == 1)
return height;
if (ratio == 2)
return height * 12 / 10;
if (ratio == 3)
return height * 4 / 3;
if (ratio == 4)
return height * 3 / 2;
if (ratio == 5)
return height * 16 / 9;
if (ratio == 6)
return height * 5 / 4;
if (ratio == 7)
return height * 2 / 1;
VERIFY_NOT_REACHED();
}
static ErrorOr<SizeHeader> read_size_header(LittleEndianInputBitStream& stream)
{
SizeHeader size {};
auto const div8 = TRY(stream.read_bit());
if (div8) {
auto const h_div8 = 1 + TRY(stream.read_bits(5));
size.height = 8 * h_div8;
} else {
size.height = U32(
1 + TRY(stream.read_bits(9)),
1 + TRY(stream.read_bits(13)),
1 + TRY(stream.read_bits(18)),
1 + TRY(stream.read_bits(30)));
}
auto const ratio = TRY(stream.read_bits(3));
if (ratio == 0) {
if (div8) {
auto const w_div8 = 1 + TRY(stream.read_bits(5));
size.width = 8 * w_div8;
} else {
size.width = U32(
1 + TRY(stream.read_bits(9)),
1 + TRY(stream.read_bits(13)),
1 + TRY(stream.read_bits(18)),
1 + TRY(stream.read_bits(30)));
}
} else {
size.width = aspect_ratio(size.height, ratio);
}
return size;
}
///
/// D.3.5 - BitDepth
struct BitDepth {
u32 bits_per_sample { 8 };
u8 exp_bits {};
};
static ErrorOr<BitDepth> read_bit_depth(LittleEndianInputBitStream& stream)
{
BitDepth bit_depth;
bool const float_sample = TRY(stream.read_bit());
if (float_sample) {
bit_depth.bits_per_sample = U32(32, 16, 24, 1 + TRY(stream.read_bits(6)));
bit_depth.exp_bits = 1 + TRY(stream.read_bits(4));
} else {
bit_depth.bits_per_sample = U32(8, 10, 12, 1 + TRY(stream.read_bits(6)));
}
return bit_depth;
}
///
/// E.2 - ColourEncoding
struct ColourEncoding {
enum class ColourSpace {
kRGB = 0,
kGrey = 1,
kXYB = 2,
kUnknown = 3,
};
enum class WhitePoint {
kD65 = 1,
kCustom = 2,
kE = 10,
kDCI = 11,
};
enum class Primaries {
kSRGB = 1,
kCustom = 2,
k2100 = 3,
kP3 = 11,
};
enum class RenderingIntent {
kPerceptual = 0,
kRelative = 1,
kSaturation = 2,
kAbsolute = 3,
};
struct Customxy {
u32 ux {};
u32 uy {};
};
enum class TransferFunction {
k709 = 1,
kUnknown = 2,
kLinear = 8,
kSRGB = 13,
kPQ = 16,
kDCI = 17,
kHLG = 18,
};
struct CustomTransferFunction {
bool have_gamma { false };
u32 gamma {};
TransferFunction transfer_function { TransferFunction::kSRGB };
};
bool want_icc = false;
ColourSpace colour_space { ColourSpace::kRGB };
WhitePoint white_point { WhitePoint::kD65 };
Primaries primaries { Primaries::kSRGB };
Customxy white {};
Customxy red {};
Customxy green {};
Customxy blue {};
CustomTransferFunction tf {};
RenderingIntent rendering_intent { RenderingIntent::kRelative };
};
[[maybe_unused]] static ErrorOr<ColourEncoding::Customxy> read_custom_xy(LittleEndianInputBitStream& stream)
{
ColourEncoding::Customxy custom_xy;
auto const read_custom = [&stream]() -> ErrorOr<u32> {
return U32(
TRY(stream.read_bits(19)),
524288 + TRY(stream.read_bits(19)),
1048576 + TRY(stream.read_bits(20)),
2097152 + TRY(stream.read_bits(21)));
};
custom_xy.ux = TRY(read_custom());
custom_xy.uy = TRY(read_custom());
return custom_xy;
}
static ErrorOr<ColourEncoding::CustomTransferFunction> read_custom_transfer_function(LittleEndianInputBitStream& stream)
{
ColourEncoding::CustomTransferFunction custom_transfer_function;
custom_transfer_function.have_gamma = TRY(stream.read_bit());
if (custom_transfer_function.have_gamma)
custom_transfer_function.gamma = TRY(stream.read_bits(24));
else
custom_transfer_function.transfer_function = TRY(read_enum<ColourEncoding::TransferFunction>(stream));
return custom_transfer_function;
}
static ErrorOr<ColourEncoding> read_colour_encoding(LittleEndianInputBitStream& stream)
{
ColourEncoding colour_encoding;
bool const all_default = TRY(stream.read_bit());
if (!all_default) {
colour_encoding.want_icc = TRY(stream.read_bit());
colour_encoding.colour_space = TRY(read_enum<ColourEncoding::ColourSpace>(stream));
auto const use_desc = !all_default && !colour_encoding.want_icc;
auto const not_xyb = colour_encoding.colour_space != ColourEncoding::ColourSpace::kXYB;
if (use_desc && not_xyb)
colour_encoding.white_point = TRY(read_enum<ColourEncoding::WhitePoint>(stream));
if (colour_encoding.white_point == ColourEncoding::WhitePoint::kCustom)
colour_encoding.white = TRY(read_custom_xy(stream));
auto const has_primaries = use_desc && not_xyb && colour_encoding.colour_space != ColourEncoding::ColourSpace::kGrey;
if (has_primaries)
colour_encoding.primaries = TRY(read_enum<ColourEncoding::Primaries>(stream));
if (colour_encoding.primaries == ColourEncoding::Primaries::kCustom) {
colour_encoding.red = TRY(read_custom_xy(stream));
colour_encoding.green = TRY(read_custom_xy(stream));
colour_encoding.blue = TRY(read_custom_xy(stream));
}
if (use_desc) {
colour_encoding.tf = TRY(read_custom_transfer_function(stream));
colour_encoding.rendering_intent = TRY(read_enum<ColourEncoding::RenderingIntent>(stream));
}
}
return colour_encoding;
}
///
/// B.3 - Extensions
struct Extensions {
u64 extensions {};
};
static ErrorOr<Extensions> read_extensions(LittleEndianInputBitStream& stream)
{
Extensions extensions;
extensions.extensions = TRY(U64(stream));
if (extensions.extensions != 0)
TODO();
return extensions;
}
///
/// K.2 - Non-separable upsampling
Array s_d_up2 {
-0.01716200, -0.03452303, -0.04022174, -0.02921014, -0.00624645,
0.14111091, 0.28896755, 0.00278718, -0.01610267, 0.56661550,
0.03777607, -0.01986694, -0.03144731, -0.01185068, -0.00213539
};
Array s_d_up4 = {
-0.02419067, -0.03491987, -0.03693351, -0.03094285, -0.00529785,
-0.01663432, -0.03556863, -0.03888905, -0.03516850, -0.00989469,
0.23651958, 0.33392945, -0.01073543, -0.01313181, -0.03556694,
0.13048175, 0.40103025, 0.03951150, -0.02077584, 0.46914198,
-0.00209270, -0.01484589, -0.04064806, 0.18942530, 0.56279892,
0.06674400, -0.02335494, -0.03551682, -0.00754830, -0.02267919,
-0.02363578, 0.00315804, -0.03399098, -0.01359519, -0.00091653,
-0.00335467, -0.01163294, -0.01610294, -0.00974088, -0.00191622,
-0.01095446, -0.03198464, -0.04455121, -0.02799790, -0.00645912,
0.06390599, 0.22963888, 0.00630981, -0.01897349, 0.67537268,
0.08483369, -0.02534994, -0.02205197, -0.01667999, -0.00384443
};
Array s_d_up8 {
-0.02928613, -0.03706353, -0.03783812, -0.03324558, -0.00447632, -0.02519406, -0.03752601, -0.03901508, -0.03663285, -0.00646649,
-0.02066407, -0.03838633, -0.04002101, -0.03900035, -0.00901973, -0.01626393, -0.03954148, -0.04046620, -0.03979621, -0.01224485,
0.29895328, 0.35757708, -0.02447552, -0.01081748, -0.04314594, 0.23903219, 0.41119301, -0.00573046, -0.01450239, -0.04246845,
0.17567618, 0.45220643, 0.02287757, -0.01936783, -0.03583255, 0.11572472, 0.47416733, 0.06284440, -0.02685066, 0.42720050,
-0.02248939, -0.01155273, -0.04562755, 0.28689496, 0.49093869, -0.00007891, -0.01545926, -0.04562659, 0.21238920, 0.53980934,
0.03369474, -0.02070211, -0.03866988, 0.14229550, 0.56593398, 0.08045181, -0.02888298, -0.03680918, -0.00542229, -0.02920477,
-0.02788574, -0.02118180, -0.03942402, -0.00775547, -0.02433614, -0.03193943, -0.02030828, -0.04044014, -0.01074016, -0.01930822,
-0.03620399, -0.01974125, -0.03919545, -0.01456093, -0.00045072, -0.00360110, -0.01020207, -0.01231907, -0.00638988, -0.00071592,
-0.00279122, -0.00957115, -0.01288327, -0.00730937, -0.00107783, -0.00210156, -0.00890705, -0.01317668, -0.00813895, -0.00153491,
-0.02128481, -0.04173044, -0.04831487, -0.03293190, -0.00525260, -0.01720322, -0.04052736, -0.05045706, -0.03607317, -0.00738030,
-0.01341764, -0.03965629, -0.05151616, -0.03814886, -0.01005819, 0.18968273, 0.33063684, -0.01300105, -0.01372950, -0.04017465,
0.13727832, 0.36402234, 0.01027890, -0.01832107, -0.03365072, 0.08734506, 0.38194295, 0.04338228, -0.02525993, 0.56408126,
0.00458352, -0.01648227, -0.04887868, 0.24585519, 0.62026135, 0.04314807, -0.02213737, -0.04158014, 0.16637289, 0.65027023,
0.09621636, -0.03101388, -0.04082742, -0.00904519, -0.02790922, -0.02117818, 0.00798662, -0.03995711, -0.01243427, -0.02231705,
-0.02946266, 0.00992055, -0.03600283, -0.01684920, -0.00111684, -0.00411204, -0.01297130, -0.01723725, -0.01022545, -0.00165306,
-0.00313110, -0.01218016, -0.01763266, -0.01125620, -0.00231663, -0.01374149, -0.03797620, -0.05142937, -0.03117307, -0.00581914,
-0.01064003, -0.03608089, -0.05272168, -0.03375670, -0.00795586, 0.09628104, 0.27129991, -0.00353779, -0.01734151, -0.03153981,
0.05686230, 0.28500998, 0.02230594, -0.02374955, 0.68214326, 0.05018048, -0.02320852, -0.04383616, 0.18459474, 0.71517975,
0.10805613, -0.03263677, -0.03637639, -0.01394373, -0.02511203, -0.01728636, 0.05407331, -0.02867568, -0.01893131, -0.00240854,
-0.00446511, -0.01636187, -0.02377053, -0.01522848, -0.00333334, -0.00819975, -0.02964169, -0.04499287, -0.02745350, -0.00612408,
0.02727416, 0.19446600, 0.00159832, -0.02232473, 0.74982506, 0.11452620, -0.03348048, -0.01605681, -0.02070339, -0.00458223
};
///
/// D.3 - Image metadata
struct PreviewHeader {
};
struct AnimationHeader {
};
struct ExtraChannelInfo {
enum class ExtraChannelType {
kAlpha = 0,
kDepth = 1,
kSpotColour = 2,
kSelectionMask = 3,
kBlack = 4,
kCFA = 5,
kThermal = 6,
kNonOptional = 15,
kOptional = 16,
};
bool d_alpha { true };
ExtraChannelType type { ExtraChannelType::kAlpha };
BitDepth bit_depth {};
u32 dim_shift {};
String name;
bool alpha_associated { false };
};
static ErrorOr<ExtraChannelInfo> read_extra_channel_info(LittleEndianInputBitStream& stream)
{
ExtraChannelInfo extra_channel_info;
extra_channel_info.d_alpha = TRY(stream.read_bit());
if (!extra_channel_info.d_alpha) {
extra_channel_info.type = TRY(read_enum<ExtraChannelInfo::ExtraChannelType>(stream));
extra_channel_info.bit_depth = TRY(read_bit_depth(stream));
extra_channel_info.dim_shift = U32(0, 3, 4, 1 + TRY(stream.read_bits(3)));
extra_channel_info.name = TRY(read_string(stream));
if (extra_channel_info.type == ExtraChannelInfo::ExtraChannelType::kAlpha)
extra_channel_info.alpha_associated = TRY(stream.read_bit());
}
if (extra_channel_info.type != ExtraChannelInfo::ExtraChannelType::kAlpha) {
TODO();
}
return extra_channel_info;
}
struct ToneMapping {
float intensity_target { 255 };
float min_nits { 0 };
bool relative_to_max_display { false };
float linear_below { 0 };
};
static ErrorOr<ToneMapping> read_tone_mapping(LittleEndianInputBitStream& stream)
{
ToneMapping tone_mapping;
bool const all_default = TRY(stream.read_bit());
if (!all_default) {
TODO();
}
return tone_mapping;
}
struct OpsinInverseMatrix {
};
static ErrorOr<OpsinInverseMatrix> read_opsin_inverse_matrix(LittleEndianInputBitStream&)
{
TODO();
}
struct ImageMetadata {
u8 orientation { 1 };
Optional<SizeHeader> intrinsic_size;
Optional<PreviewHeader> preview;
Optional<AnimationHeader> animation;
BitDepth bit_depth;
bool modular_16bit_buffers { true };
u16 num_extra_channels {};
Vector<ExtraChannelInfo, 4> ec_info;
bool xyb_encoded { true };
ColourEncoding colour_encoding;
ToneMapping tone_mapping;
Extensions extensions;
bool default_m;
OpsinInverseMatrix opsin_inverse_matrix;
u8 cw_mask { 0 };
Array<double, 15> up2_weight = s_d_up2;
Array<double, 55> up4_weight = s_d_up4;
Array<double, 210> up8_weight = s_d_up8;
u16 number_of_color_channels() const
{
if (!xyb_encoded && colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey)
return 1;
return 3;
}
u16 number_of_channels() const
{
return number_of_color_channels() + num_extra_channels;
}
Optional<u16> alpha_channel() const
{
for (u16 i = 0; i < ec_info.size(); ++i) {
if (ec_info[i].type == ExtraChannelInfo::ExtraChannelType::kAlpha)
return i + number_of_color_channels();
}
return OptionalNone {};
}
};
static ErrorOr<ImageMetadata> read_metadata_header(LittleEndianInputBitStream& stream)
{
ImageMetadata metadata;
bool const all_default = TRY(stream.read_bit());
if (!all_default) {
bool const extra_fields = TRY(stream.read_bit());
if (extra_fields) {
metadata.orientation = 1 + TRY(stream.read_bits(3));
bool const have_intr_size = TRY(stream.read_bit());
if (have_intr_size)
metadata.intrinsic_size = TRY(read_size_header(stream));
bool const have_preview = TRY(stream.read_bit());
if (have_preview)
TODO();
bool const have_animation = TRY(stream.read_bit());
if (have_animation)
TODO();
}
metadata.bit_depth = TRY(read_bit_depth(stream));
metadata.modular_16bit_buffers = TRY(stream.read_bit());
metadata.num_extra_channels = U32(0, 1, 2 + TRY(stream.read_bits(4)), 1 + TRY(stream.read_bits(12)));
for (u16 i {}; i < metadata.num_extra_channels; ++i)
metadata.ec_info.append(TRY(read_extra_channel_info(stream)));
metadata.xyb_encoded = TRY(stream.read_bit());
metadata.colour_encoding = TRY(read_colour_encoding(stream));
if (extra_fields)
metadata.tone_mapping = TRY(read_tone_mapping(stream));
metadata.extensions = TRY(read_extensions(stream));
}
metadata.default_m = TRY(stream.read_bit());
if (!metadata.default_m && metadata.xyb_encoded)
metadata.opsin_inverse_matrix = TRY(read_opsin_inverse_matrix(stream));
if (!metadata.default_m)
metadata.cw_mask = TRY(stream.read_bits(3));
if (metadata.cw_mask != 0)
TODO();
return metadata;
}
///
/// Table F.7 — BlendingInfo bundle
struct BlendingInfo {
enum class BlendMode {
kReplace = 0,
kAdd = 1,
kBlend = 2,
kMulAdd = 3,
kMul = 4,
};
BlendMode mode {};
u8 alpha_channel {};
bool clamp { false };
u8 source {};
};
static ErrorOr<BlendingInfo> read_blending_info(LittleEndianInputBitStream& stream, ImageMetadata const& metadata, bool full_frame)
{
BlendingInfo blending_info;
blending_info.mode = static_cast<BlendingInfo::BlendMode>(U32(0, 1, 2, 3 + TRY(stream.read_bits(2))));
bool const extra = metadata.num_extra_channels > 0;
if (extra) {
auto const blend_or_mul_add = blending_info.mode == BlendingInfo::BlendMode::kBlend
|| blending_info.mode == BlendingInfo::BlendMode::kMulAdd;
if (blend_or_mul_add)
blending_info.alpha_channel = U32(0, 1, 2, 3 + TRY(stream.read_bits(3)));
if (blend_or_mul_add || blending_info.mode == BlendingInfo::BlendMode::kMul)
blending_info.clamp = TRY(stream.read_bit());
}
if (blending_info.mode != BlendingInfo::BlendMode::kReplace
|| !full_frame) {
blending_info.source = TRY(stream.read_bits(2));
}
return blending_info;
}
///
/// J.1 - General
struct RestorationFilter {
bool gab { true };
u8 epf_iters { 2 };
Extensions extensions;
};
static ErrorOr<RestorationFilter> read_restoration_filter(LittleEndianInputBitStream& stream)
{
RestorationFilter restoration_filter;
auto const all_defaults = TRY(stream.read_bit());
if (!all_defaults) {
restoration_filter.gab = TRY(stream.read_bit());
if (restoration_filter.gab) {
TODO();
}
restoration_filter.epf_iters = TRY(stream.read_bits(2));
if (restoration_filter.epf_iters != 0) {
TODO();
}
restoration_filter.extensions = TRY(read_extensions(stream));
}
return restoration_filter;
}
///
/// Table F.6 — Passes bundle
struct Passes {
u8 num_passes { 1 };
};
static ErrorOr<Passes> read_passes(LittleEndianInputBitStream& stream)
{
Passes passes;
passes.num_passes = U32(1, 2, 3, 4 + TRY(stream.read_bits(3)));
if (passes.num_passes != 1) {
TODO();
}
return passes;
}
///
/// F.2 - FrameHeader
struct FrameHeader {
enum class FrameType {
kRegularFrame = 0,
kLFFrame = 1,
kReferenceOnly = 2,
kSkipProgressive = 3,
};
enum class Encoding {
kVarDCT = 0,
kModular = 1,
};
enum class Flags {
None = 0,
kNoise = 1,
kPatches = 1 << 1,
kSplines = 1 << 4,
kUseLfFrame = 1 << 5,
kSkipAdaptiveLFSmoothing = 1 << 7,
};
FrameType frame_type { FrameType::kRegularFrame };
Encoding encoding { Encoding::kVarDCT };
Flags flags { Flags::None };
bool do_YCbCr { false };
Array<u8, 3> jpeg_upsampling {};
u8 upsampling {};
FixedArray<u8> ec_upsampling {};
u8 group_size_shift { 1 };
Passes passes {};
u8 lf_level {};
bool have_crop { false };
i32 x0 {};
i32 y0 {};
u32 width {};
u32 height {};
BlendingInfo blending_info {};
FixedArray<BlendingInfo> ec_blending_info {};
u32 duration {};
bool is_last { true };
u8 save_as_reference {};
bool save_before_ct {};
String name {};
RestorationFilter restoration_filter {};
Extensions extensions {};
};
static int operator&(FrameHeader::Flags first, FrameHeader::Flags second)
{
return static_cast<int>(first) & static_cast<int>(second);
}
static ErrorOr<FrameHeader> read_frame_header(LittleEndianInputBitStream& stream,
SizeHeader size_header,
ImageMetadata const& metadata)
{
FrameHeader frame_header;
bool const all_default = TRY(stream.read_bit());
if (!all_default) {
frame_header.frame_type = static_cast<FrameHeader::FrameType>(TRY(stream.read_bits(2)));
frame_header.encoding = static_cast<FrameHeader::Encoding>(TRY(stream.read_bits(1)));
frame_header.flags = static_cast<FrameHeader::Flags>(TRY(U64(stream)));
if (!metadata.xyb_encoded)
frame_header.do_YCbCr = TRY(stream.read_bit());
if (!(frame_header.flags & FrameHeader::Flags::kUseLfFrame)) {
if (frame_header.do_YCbCr) {
frame_header.jpeg_upsampling[0] = TRY(stream.read_bits(2));
frame_header.jpeg_upsampling[1] = TRY(stream.read_bits(2));
frame_header.jpeg_upsampling[2] = TRY(stream.read_bits(2));
}
frame_header.upsampling = U32(1, 2, 4, 8);
frame_header.ec_upsampling = TRY(FixedArray<u8>::create(metadata.num_extra_channels));
for (u16 i {}; i < metadata.num_extra_channels; ++i)
frame_header.ec_upsampling[i] = U32(1, 2, 4, 8);
}
if (frame_header.encoding == FrameHeader::Encoding::kModular)
frame_header.group_size_shift = TRY(stream.read_bits(2));
if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
TODO();
if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly)
frame_header.passes = TRY(read_passes(stream));
if (frame_header.frame_type == FrameHeader::FrameType::kLFFrame)
TODO();
if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame)
frame_header.have_crop = TRY(stream.read_bit());
if (frame_header.have_crop) {
auto const read_crop_dimension = [&]() -> ErrorOr<u32> {
return U32(TRY(stream.read_bits(8)), 256 + TRY(stream.read_bits(11)), 2304 + TRY(stream.read_bits(14)), 18688 + TRY(stream.read_bits(30)));
};
if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly) {
frame_header.x0 = unpack_signed(TRY(read_crop_dimension()));
frame_header.y0 = unpack_signed(TRY(read_crop_dimension()));
}
frame_header.width = TRY(read_crop_dimension());
frame_header.height = TRY(read_crop_dimension());
}
bool const normal_frame = frame_header.frame_type == FrameHeader::FrameType::kRegularFrame
|| frame_header.frame_type == FrameHeader::FrameType::kSkipProgressive;
// Let full_frame be true if and only if have_crop is false or if the frame area given
// by width and height and offsets x0 and y0 completely covers the image area.
bool const cover_image_area = frame_header.x0 <= 0 && frame_header.y0 <= 0
&& (frame_header.width + frame_header.x0 >= size_header.width)
&& (frame_header.height + frame_header.y0 == size_header.height);
bool const full_frame = !frame_header.have_crop || cover_image_area;
if (normal_frame) {
frame_header.blending_info = TRY(read_blending_info(stream, metadata, full_frame));
frame_header.ec_blending_info = TRY(FixedArray<BlendingInfo>::create(metadata.num_extra_channels));
for (u16 i {}; i < metadata.num_extra_channels; ++i)
frame_header.ec_blending_info[i] = TRY(read_blending_info(stream, metadata, full_frame));
if (metadata.animation.has_value())
TODO();
frame_header.is_last = TRY(stream.read_bit());
}
// FIXME: Ensure that is_last has the correct default value
VERIFY(normal_frame);
auto const resets_canvas = full_frame && frame_header.blending_info.mode == BlendingInfo::BlendMode::kReplace;
auto const can_reference = !frame_header.is_last && (frame_header.duration == 0 || frame_header.save_as_reference != 0) && frame_header.frame_type != FrameHeader::FrameType::kLFFrame;
if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) {
if (!frame_header.is_last)
TODO();
}
frame_header.save_before_ct = !normal_frame;
if (frame_header.frame_type == FrameHeader::FrameType::kReferenceOnly || (resets_canvas && can_reference))
frame_header.save_before_ct = TRY(stream.read_bit());
frame_header.name = TRY(read_string(stream));
frame_header.restoration_filter = TRY(read_restoration_filter(stream));
frame_header.extensions = TRY(read_extensions(stream));
}
return frame_header;
}
///
/// F.3 TOC
struct TOC {
FixedArray<u32> entries;
FixedArray<u32> group_offsets;
};
static u64 num_toc_entries(FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
{
// F.3.1 - General
if (num_groups == 1 && frame_header.passes.num_passes == 1)
return 1;
return 1 + num_lf_groups + 1 + num_groups * frame_header.passes.num_passes;
}
static ErrorOr<TOC> read_toc(LittleEndianInputBitStream& stream, FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
{
TOC toc;
bool const permuted_toc = TRY(stream.read_bit());
if (permuted_toc) {
// Read permutations
TODO();
}
// F.3.3 - Decoding TOC
stream.align_to_byte_boundary();
auto const toc_entries = num_toc_entries(frame_header, num_groups, num_lf_groups);
toc.entries = TRY(FixedArray<u32>::create(toc_entries));
toc.group_offsets = TRY(FixedArray<u32>::create(toc_entries));
for (u32 i {}; i < toc_entries; ++i) {
auto const new_entry = U32(
TRY(stream.read_bits(10)),
1024 + TRY(stream.read_bits(14)),
17408 + TRY(stream.read_bits(22)),
4211712 + TRY(stream.read_bits(30)));
toc.entries[i] = new_entry;
toc.group_offsets[i] = (i == 0 ? 0 : toc.group_offsets[i - 1]) + new_entry;
}
if (permuted_toc)
TODO();
stream.align_to_byte_boundary();
return toc;
}
///
/// G.1.2 - LF channel dequantization weights
struct LfChannelDequantization {
float m_x_lf_unscaled { 4096 };
float m_y_lf_unscaled { 512 };
float m_b_lf_unscaled { 256 };
};
static ErrorOr<LfChannelDequantization> read_lf_channel_dequantization(LittleEndianInputBitStream& stream)
{
LfChannelDequantization lf_channel_dequantization;
auto const all_default = TRY(stream.read_bit());
if (!all_default) {
TODO();
}
return lf_channel_dequantization;
}
///
/// C - Entropy decoding
class ANSHistogram {
public:
static ErrorOr<ANSHistogram> read_histogram(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
{
ANSHistogram histogram;
auto const alphabet_size = TRY(histogram.read_ans_distribution(stream, log_alphabet_size));
// C.2.6 - Alias mapping
histogram.m_log_bucket_size = 12 - log_alphabet_size;
histogram.m_bucket_size = 1 << histogram.m_log_bucket_size;
auto const table_size = 1 << log_alphabet_size;
Optional<u64> index_of_unique_symbol {};
for (u64 i {}; i < histogram.m_distribution.size(); ++i) {
if (histogram.m_distribution[i] == 1 << 12)
index_of_unique_symbol = i;
}
TRY(histogram.m_symbols.try_resize(table_size));
TRY(histogram.m_offsets.try_resize(table_size));
TRY(histogram.m_cutoffs.try_resize(table_size));
if (index_of_unique_symbol.has_value()) {
auto const s = *index_of_unique_symbol;
for (i32 i = 0; i < table_size; i++) {
histogram.m_symbols[i] = s;
histogram.m_offsets[i] = histogram.m_bucket_size * i;
histogram.m_cutoffs[i] = 0;
}
return histogram;
}
Vector<u16> overfull;
Vector<u16> underfull;
for (u16 i {}; i < alphabet_size; i++) {
histogram.m_cutoffs[i] = histogram.m_distribution[i];
histogram.m_symbols[i] = i;
if (histogram.m_cutoffs[i] > histogram.m_bucket_size)
TRY(overfull.try_append(i));
else if (histogram.m_cutoffs[i] < histogram.m_bucket_size)
TRY(underfull.try_append(i));
}
for (u16 i = alphabet_size; i < table_size; i++) {
histogram.m_cutoffs[i] = 0;
TRY(underfull.try_append(i));
}
while (overfull.size() > 0) {
VERIFY(underfull.size() > 0);
auto const o = overfull.take_last();
auto const u = underfull.take_last();
auto const by = histogram.m_bucket_size - histogram.m_cutoffs[u];
histogram.m_cutoffs[o] -= by;
histogram.m_symbols[u] = o;
histogram.m_offsets[u] = histogram.m_cutoffs[o];
if (histogram.m_cutoffs[o] < histogram.m_bucket_size)
TRY(underfull.try_append(o));
else if (histogram.m_cutoffs[o] > histogram.m_bucket_size)
TRY(overfull.try_append(o));
}
for (u16 i {}; i < table_size; i++) {
if (histogram.m_cutoffs[i] == histogram.m_bucket_size) {
histogram.m_symbols[i] = i;
histogram.m_offsets[i] = 0;
histogram.m_cutoffs[i] = 0;
} else {
histogram.m_offsets[i] -= histogram.m_cutoffs[i];
}
}
return histogram;
}
ErrorOr<u16> read_symbol(LittleEndianInputBitStream& stream, Optional<u32>& state) const
{
if (!state.has_value())
state = TRY(stream.read_bits(32));
auto const index = *state & 0xFFF;
auto const symbol_and_offset = alias_mapping(index);
state = m_distribution[symbol_and_offset.symbol] * (*state >> 12) + symbol_and_offset.offset;
if (*state < (1 << 16))
state = (*state << 16) | TRY(stream.read_bits(16));
return symbol_and_offset.symbol;
}
private:
static ErrorOr<u8> U8(LittleEndianInputBitStream& stream)
{
if (TRY(stream.read_bit()) == 0)
return 0;
auto const n = TRY(stream.read_bits(3));
return TRY(stream.read_bits(n)) + (1 << n);
}
struct SymbolAndOffset {
u16 symbol {};
u16 offset {};
};
SymbolAndOffset alias_mapping(u32 x) const
{
// C.2.6 - Alias mapping
auto const i = x >> m_log_bucket_size;
auto const pos = x & (m_bucket_size - 1);
u16 const symbol = pos >= m_cutoffs[i] ? m_symbols[i] : i;
u16 const offset = pos >= m_cutoffs[i] ? m_offsets[i] + pos : pos;
return { symbol, offset };
}
static ErrorOr<u16> read_with_prefix(LittleEndianInputBitStream& stream)
{
auto const prefix = TRY(stream.read_bits(3));
switch (prefix) {
case 0:
return 10;
case 1:
for (auto const possibility : { 4, 0, 11, 13 }) {
if (TRY(stream.read_bit()))
return possibility;
}
return 12;
case 2:
return 7;
case 3:
return TRY(stream.read_bit()) ? 1 : 3;
case 4:
return 6;
case 5:
return 8;
case 6:
return 9;
case 7:
return TRY(stream.read_bit()) ? 2 : 5;
default:
VERIFY_NOT_REACHED();
}
}
ErrorOr<u16> read_ans_distribution(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
{
// C.2.5 ANS distribution decoding
auto const table_size = 1 << log_alphabet_size;
m_distribution = TRY(FixedArray<i32>::create(table_size));
if (TRY(stream.read_bit())) {
u16 alphabet_size {};
if (TRY(stream.read_bit())) {
auto const v1 = TRY(U8(stream));
auto const v2 = TRY(U8(stream));
VERIFY(v1 != v2);
m_distribution[v1] = TRY(stream.read_bits(12));
m_distribution[v2] = (1 << 12) - m_distribution[v1];
alphabet_size = 1 + max(v1, v2);
} else {
auto const x = TRY(U8(stream));
m_distribution[x] = 1 << 12;
alphabet_size = 1 + x;
}
return alphabet_size;
}
if (TRY(stream.read_bit())) {
auto const alphabet_size = TRY(U8(stream)) + 1;
for (u16 i = 0; i < alphabet_size; i++)
m_distribution[i] = (1 << 12) / alphabet_size;
for (u16 i = 0; i < ((1 << 12) % alphabet_size); i++)
m_distribution[i]++;
return alphabet_size;
}
u8 len = 0;
while (len < 3) {
if (TRY(stream.read_bit()))
len++;
else
break;
}
u8 const shift = TRY(stream.read_bits(len)) + (1 << len) - 1;
VERIFY(shift <= 13);
auto const alphabet_size = TRY(U8(stream)) + 3;
i32 omit_log = -1;
i32 omit_pos = -1;
auto same = TRY(FixedArray<i32>::create(alphabet_size));
auto logcounts = TRY(FixedArray<i32>::create(alphabet_size));
u8 rle {};
for (u16 i = 0; i < alphabet_size; i++) {
logcounts[i] = TRY(read_with_prefix(stream));
if (logcounts[i] == 13) {
rle = TRY(U8(stream));
same[i] = rle + 5;
i += rle + 3;
continue;
}
if (logcounts[i] > omit_log) {
omit_log = logcounts[i];
omit_pos = i;
}
}
VERIFY(m_distribution[omit_pos] >= 0);
VERIFY(omit_pos + 1 >= alphabet_size || logcounts[omit_pos + 1] != 13);
i32 prev = 0;
i32 numsame = 0;
i64 total_count {};
for (u16 i = 0; i < alphabet_size; i++) {
if (same[i] != 0) {
numsame = same[i] - 1;
prev = i > 0 ? m_distribution[i - 1] : 0;
}
if (numsame > 0) {
m_distribution[i] = prev;
numsame--;
} else {
auto const code = logcounts[i];
if (i == omit_pos || code == 0)
continue;
if (code == 1) {
m_distribution[i] = 1;
} else {
auto const bitcount = min(max(0, shift - ((12 - code + 1) >> 1)), code - 1);
m_distribution[i] = (1 << (code - 1)) + (TRY(stream.read_bits(bitcount)) << (code - 1 - bitcount));
}
}
total_count += m_distribution[i];
}
m_distribution[omit_pos] = (1 << 12) - total_count;
VERIFY(m_distribution[omit_pos] >= 0);
return alphabet_size;
}
Vector<u16> m_symbols;
Vector<u16> m_offsets;
Vector<u16> m_cutoffs;
FixedArray<i32> m_distribution;
u16 m_log_bucket_size {};
u16 m_bucket_size {};
};
struct LZ77 {
bool lz77_enabled {};
u32 min_symbol {};
u32 min_length {};
};
static ErrorOr<LZ77> read_lz77(LittleEndianInputBitStream& stream)
{
LZ77 lz77;
lz77.lz77_enabled = TRY(stream.read_bit());
if (lz77.lz77_enabled) {
lz77.min_symbol = U32(224, 512, 4096, 8 + TRY(stream.read_bits(15)));
lz77.min_length = U32(3, 4, 5 + TRY(stream.read_bits(2)), 9 + TRY(stream.read_bits(8)));
}
return lz77;
}
class EntropyDecoder {
AK_MAKE_NONCOPYABLE(EntropyDecoder);
AK_MAKE_DEFAULT_MOVABLE(EntropyDecoder);
public:
EntropyDecoder() = default;
~EntropyDecoder()
{
if (m_state.has_value() && *m_state != 0x130000)
dbgln("JPEGXLLoader: ANS decoder left in invalid state");
}
static ErrorOr<EntropyDecoder> create(LittleEndianInputBitStream& stream, u32 initial_num_distrib)
{
EntropyDecoder entropy_decoder;
// C.2 - Distribution decoding
entropy_decoder.m_lz77 = TRY(read_lz77(stream));
if (entropy_decoder.m_lz77.lz77_enabled) {
entropy_decoder.m_lz_dist_ctx = initial_num_distrib++;
entropy_decoder.m_lz_len_conf = TRY(read_config(stream, 8));
entropy_decoder.m_lz77_window = TRY(FixedArray<u32>::create(1 << 20));
}
TRY(entropy_decoder.read_pre_clustered_distributions(stream, initial_num_distrib));
bool const use_prefix_code = TRY(stream.read_bit());
if (!use_prefix_code)
entropy_decoder.m_log_alphabet_size = 5 + TRY(stream.read_bits(2));
for (auto& config : entropy_decoder.m_configs)
config = TRY(read_config(stream, entropy_decoder.m_log_alphabet_size));
if (use_prefix_code) {
entropy_decoder.m_distributions = Vector<BrotliCanonicalCode> {};
auto& distributions = entropy_decoder.m_distributions.get<Vector<BrotliCanonicalCode>>();
TRY(distributions.try_resize(entropy_decoder.m_configs.size()));
Vector<u16> counts;
TRY(counts.try_resize(entropy_decoder.m_configs.size()));
for (auto& count : counts) {
if (TRY(stream.read_bit())) {
auto const n = TRY(stream.read_bits(4));
count = 1 + (1 << n) + TRY(stream.read_bits(n));
} else {
count = 1;
}
}
// After reading the counts, the decoder reads each D[i] (implicitly
// described by a prefix code) as specified in C.2.4, with alphabet_size = count[i].
for (u32 i {}; i < distributions.size(); ++i) {
// The alphabet size mentioned in the [Brotli] RFC is explicitly specified as parameter alphabet_size
// when the histogram is being decoded, except in the special case of alphabet_size == 1, where no
// histogram is read, and all decoded symbols are zero without reading any bits at all.
if (counts[i] != 1)
distributions[i] = TRY(BrotliCanonicalCode::read_prefix_code(stream, counts[i]));
else
distributions[i] = BrotliCanonicalCode { { 1 }, { 0 } };
}
} else {
entropy_decoder.m_distributions = Vector<ANSHistogram> {};
auto& distributions = entropy_decoder.m_distributions.get<Vector<ANSHistogram>>();
TRY(distributions.try_ensure_capacity(entropy_decoder.m_configs.size()));
for (u32 i = 0; i < entropy_decoder.m_configs.size(); ++i)
distributions.empend(TRY(ANSHistogram::read_histogram(stream, entropy_decoder.m_log_alphabet_size)));
}
return entropy_decoder;
}
ErrorOr<u32> decode_hybrid_uint(LittleEndianInputBitStream& stream, u32 context)
{
// C.3.3 - Hybrid integer decoding
static constexpr Array<Array<i8, 2>, 120> kSpecialDistances = {
Array<i8, 2> { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { 2, 1 }, { -2, 1 }, { 2, 2 },
{ -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 }, { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 },
{ -3, 2 }, { 0, 4 }, { 4, 0 }, { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 },
{ -2, 4 }, { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 }, { 1, 5 },
{ -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 }, { 4, 4 }, { -4, 4 }, { 3, 5 },
{ -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 }, { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 },
{ -2, 6 }, { 6, 2 }, { -6, 2 }, { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 },
{ -6, 3 }, { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 }, { 4, 6 },
{ -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 }, { 3, 7 }, { -3, 7 }, { 7, 3 },
{ -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 }, { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 },
{ 8, 1 }, { 8, 2 }, { 6, 6 }, { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
{ -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
};
u32 r {};
if (m_lz77_num_to_copy > 0) {
r = m_lz77_window[(m_lz77_copy_pos++) & 0xFFFFF];
m_lz77_num_to_copy--;
} else {
// Read symbol from entropy coded stream using D[clusters[ctx]]
auto token = TRY(read_symbol(stream, context));
if (m_lz77.lz77_enabled && token >= m_lz77.min_symbol) {
m_lz77_num_to_copy = TRY(read_uint(stream, m_lz_len_conf, token - m_lz77.min_symbol)) + m_lz77.min_length;
// Read symbol using D[clusters[lz_dist_ctx]]
token = TRY(read_symbol(stream, m_lz_dist_ctx));
auto distance = TRY(read_uint(stream, m_configs[m_clusters[m_lz_dist_ctx]], token));
if (m_dist_multiplier == 0) {
distance++;
} else if (distance < 120) {
auto const offset = kSpecialDistances[distance][0];
distance = offset + m_dist_multiplier * kSpecialDistances[distance][1];
if (distance < 1)
distance = 1;
} else {
distance -= 119;
}
distance = min(distance, min(m_lz77_num_decoded, 1 << 20));
m_lz77_copy_pos = m_lz77_num_decoded - distance;
return decode_hybrid_uint(stream, m_clusters[context]);
}
r = TRY(read_uint(stream, m_configs[m_clusters[context]], token));
}
if (m_lz77.lz77_enabled)
m_lz77_window[(m_lz77_num_decoded++) & 0xFFFFF] = r;
return r;
}
void set_dist_multiplier(u32 dist_multiplier)
{
m_dist_multiplier = dist_multiplier;
}
private:
using BrotliCanonicalCode = Compress::Brotli::CanonicalCode;
struct HybridUint {
u32 split_exponent {};
u32 split {};
u32 msb_in_token {};
u32 lsb_in_token {};
};
static ErrorOr<u32> read_uint(LittleEndianInputBitStream& stream, HybridUint const& config, u32 token)
{
if (token < config.split)
return token;
auto const n = config.split_exponent
- config.msb_in_token
- config.lsb_in_token
+ ((token - config.split) >> (config.msb_in_token + config.lsb_in_token));
VERIFY(n < 32);
u32 const low_bits = token & ((1 << config.lsb_in_token) - 1);
token = token >> config.lsb_in_token;
token &= (1 << config.msb_in_token) - 1;
token |= (1 << config.msb_in_token);
auto const result = ((token << n | TRY(stream.read_bits(n))) << config.lsb_in_token) | low_bits;
2023-09-03 20:25:27 +00:00
VERIFY(result < (1ull << 32));
return result;
}
static ErrorOr<HybridUint> read_config(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
{
// C.2.3 - Hybrid integer configuration
HybridUint config {};
config.split_exponent = TRY(stream.read_bits(ceil(log2(log_alphabet_size + 1))));
if (config.split_exponent != log_alphabet_size) {
auto nbits = ceil(log2(config.split_exponent + 1));
config.msb_in_token = TRY(stream.read_bits(nbits));
nbits = ceil(log2(config.split_exponent - config.msb_in_token + 1));
config.lsb_in_token = TRY(stream.read_bits(nbits));
} else {
config.msb_in_token = 0;
config.lsb_in_token = 0;
}
config.split = 1 << config.split_exponent;
return config;
}
ErrorOr<u32> read_symbol(LittleEndianInputBitStream& stream, u32 context)
{
u32 token {};
TRY(m_distributions.visit(
[&](Vector<BrotliCanonicalCode> const& distributions) -> ErrorOr<void> {
token = TRY(distributions[m_clusters[context]].read_symbol(stream));
return {};
},
[&](Vector<ANSHistogram> const& distributions) -> ErrorOr<void> {
token = TRY(distributions[m_clusters[context]].read_symbol(stream, m_state));
return {};
}));
return token;
}
ErrorOr<void> read_pre_clustered_distributions(LittleEndianInputBitStream& stream, u32 num_distrib)
{
// C.2.2 Distribution clustering
if (num_distrib == 1) {
// If num_dist == 1, then num_clusters = 1 and clusters[0] = 0, and the remainder of this subclause is skipped.
m_clusters = { 0 };
TRY(m_configs.try_resize(1));
return {};
};
TRY(m_clusters.try_resize(num_distrib));
bool const is_simple = TRY(stream.read_bit());
u16 num_clusters = 0;
auto const read_clusters = [&](auto&& reader) -> ErrorOr<void> {
for (u32 i {}; i < num_distrib; ++i) {
m_clusters[i] = TRY(reader());
if (m_clusters[i] >= num_clusters)
num_clusters = m_clusters[i] + 1;
}
return {};
};
if (is_simple) {
u8 const nbits = TRY(stream.read_bits(2));
TRY(read_clusters([nbits, &stream]() { return stream.read_bits(nbits); }));
} else {
auto const use_mtf = TRY(stream.read_bit());
if (num_distrib == 2)
TODO();
auto decoder = TRY(EntropyDecoder::create(stream, 1));
TRY(read_clusters([&]() { return decoder.decode_hybrid_uint(stream, 0); }));
if (use_mtf)
TODO();
}
TRY(m_configs.try_resize(num_clusters));
return {};
}
LZ77 m_lz77 {};
u32 m_lz_dist_ctx {};
HybridUint m_lz_len_conf {};
FixedArray<u32> m_lz77_window {};
u32 m_lz77_num_to_copy {};
u32 m_lz77_copy_pos {};
u32 m_lz77_num_decoded {};
u32 m_dist_multiplier {};
Vector<u32> m_clusters;
Vector<HybridUint> m_configs;
u8 m_log_alphabet_size { 15 };
Variant<Vector<BrotliCanonicalCode>, Vector<ANSHistogram>> m_distributions { Vector<BrotliCanonicalCode> {} }; // D in the spec
Optional<u32> m_state {};
};
///
/// H.4.2 - MA tree decoding
class MATree {
public:
struct LeafNode {
u32 ctx {};
u8 predictor {};
i32 offset {};
u32 multiplier {};
};
static ErrorOr<MATree> decode(LittleEndianInputBitStream& stream, Optional<EntropyDecoder>& decoder)
{
// G.1.3 - GlobalModular
MATree tree;
// 1 / 2 Read the 6 pre-clustered distributions
auto const num_distrib = 6;
if (!decoder.has_value())
decoder = TRY(EntropyDecoder::create(stream, num_distrib));
// 2 / 2 Decode the tree
u64 ctx_id = 0;
u64 nodes_left = 1;
tree.m_tree.clear();
while (nodes_left > 0) {
nodes_left--;
i32 const property = TRY(decoder->decode_hybrid_uint(stream, 1)) - 1;
if (property >= 0) {
DecisionNode decision_node;
decision_node.property = property;
decision_node.value = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 0)));
decision_node.left_child = tree.m_tree.size() + nodes_left + 1;
decision_node.right_child = tree.m_tree.size() + nodes_left + 2;
tree.m_tree.empend(decision_node);
nodes_left += 2;
} else {
LeafNode leaf_node;
leaf_node.ctx = ctx_id++;
leaf_node.predictor = TRY(decoder->decode_hybrid_uint(stream, 2));
leaf_node.offset = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 3)));
auto const mul_log = TRY(decoder->decode_hybrid_uint(stream, 4));
auto const mul_bits = TRY(decoder->decode_hybrid_uint(stream, 5));
leaf_node.multiplier = (mul_bits + 1) << mul_log;
tree.m_tree.empend(leaf_node);
}
}
// Finally, the decoder reads (tree.size() + 1) / 2 pre-clustered distributions D as specified in C.1.
auto const num_pre_clustered_distributions = (tree.m_tree.size() + 1) / 2;
decoder = TRY(decoder->create(stream, num_pre_clustered_distributions));
return tree;
}
LeafNode get_leaf(Vector<i32> const& properties) const
{
// To find the MA leaf node, the MA tree is traversed, starting at the root node tree[0]
// and for each decision node d, testing if property[d.property] > d.value, proceeding to
// the node tree[d.left_child] if the test evaluates to true and to the node tree[d.right_child]
// otherwise, until a leaf node is reached.
DecisionNode node { m_tree[0].get<DecisionNode>() };
while (true) {
auto const next_node = [this, &properties, &node]() {
// Note: The behavior when trying to access a non-existing property is taken from jxl-oxide
if (node.property < properties.size() && properties[node.property] > node.value)
return m_tree[node.left_child];
return m_tree[node.right_child];
}();
if (next_node.has<LeafNode>())
return next_node.get<LeafNode>();
node = next_node.get<DecisionNode>();
}
}
private:
struct DecisionNode {
u64 property {};
i64 value {};
u64 left_child {};
u64 right_child {};
};
Vector<Variant<DecisionNode, LeafNode>> m_tree;
};
///
/// H.5 - Self-correcting predictor
struct WPHeader {
u8 wp_p1 { 16 };
u8 wp_p2 { 10 };
u8 wp_p3a { 7 };
u8 wp_p3b { 7 };
u8 wp_p3c { 7 };
u8 wp_p3d { 0 };
u8 wp_p3e { 0 };
Array<u8, 4> wp_w { 13, 12, 12, 12 };
};
static ErrorOr<WPHeader> read_self_correcting_predictor(LittleEndianInputBitStream& stream)
{
WPHeader self_correcting_predictor {};
bool const default_wp = TRY(stream.read_bit());
if (!default_wp) {
TODO();
}
return self_correcting_predictor;
}
///
///
struct TransformInfo {
enum class TransformId {
kRCT = 0,
kPalette = 1,
kSqueeze = 2,
};
TransformId tr {};
u32 begin_c {};
u32 rct_type {};
};
static ErrorOr<TransformInfo> read_transform_info(LittleEndianInputBitStream& stream)
{
TransformInfo transform_info;
transform_info.tr = static_cast<TransformInfo::TransformId>(TRY(stream.read_bits(2)));
if (transform_info.tr != TransformInfo::TransformId::kSqueeze) {
transform_info.begin_c = U32(
TRY(stream.read_bits(3)),
8 + TRY(stream.read_bits(3)),
72 + TRY(stream.read_bits(10)),
1096 + TRY(stream.read_bits(13)));
}
if (transform_info.tr == TransformInfo::TransformId::kRCT) {
transform_info.rct_type = U32(
6,
TRY(stream.read_bits(2)),
2 + TRY(stream.read_bits(4)),
10 + TRY(stream.read_bits(6)));
}
if (transform_info.tr != TransformInfo::TransformId::kRCT)
TODO();
return transform_info;
}
///
/// Local abstractions to store the decoded image
class Channel {
public:
static ErrorOr<Channel> create(u32 width, u32 height)
{
Channel channel;
channel.m_width = width;
channel.m_height = height;
TRY(channel.m_pixels.try_resize(channel.m_width * channel.m_height));
return channel;
}
i32 get(u32 x, u32 y) const
{
return m_pixels[y * m_width + x];
}
void set(u32 x, u32 y, i32 value)
{
m_pixels[y * m_width + x] = value;
}
u32 width() const
{
return m_width;
}
u32 height() const
{
return m_height;
}
u32 hshift() const
{
return m_hshift;
}
u32 vshift() const
{
return m_vshift;
}
bool decoded() const
{
return m_decoded;
}
void set_decoded(bool decoded)
{
m_decoded = decoded;
}
private:
u32 m_width {};
u32 m_height {};
u32 m_hshift {};
u32 m_vshift {};
bool m_decoded { false };
Vector<i32> m_pixels {};
};
class Image {
public:
static ErrorOr<Image> create(IntSize size, ImageMetadata const& metadata)
{
Image image {};
for (u16 i = 0; i < metadata.number_of_channels(); ++i) {
if (i < metadata.number_of_color_channels()) {
TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height()))));
} else {
auto const dim_shift = metadata.ec_info[i - metadata.number_of_color_channels()].dim_shift;
TRY(image.m_channels.try_append(TRY(Channel::create(size.width() >> dim_shift, size.height() >> dim_shift))));
}
}
return image;
}
void blend_into(Image& image, FrameHeader const& frame_header) const
{
// FIXME: We should use ec_blending_info when appropriate
if (frame_header.blending_info.mode != BlendingInfo::BlendMode::kReplace)
TODO();
for (u16 i = 0; i < m_channels.size(); ++i) {
auto const& input_channel = m_channels[i];
auto& output_channel = image.channels()[i];
for (u32 y = 0; y < input_channel.height(); ++y) {
auto const corrected_y = static_cast<i64>(y) + frame_header.y0;
if (corrected_y < 0)
continue;
if (corrected_y >= output_channel.height())
break;
for (u32 x = 0; x < input_channel.width(); ++x) {
auto const corrected_x = static_cast<i64>(x) + frame_header.x0;
if (corrected_x < 0)
continue;
if (corrected_x >= output_channel.width())
break;
output_channel.set(corrected_x, corrected_y, input_channel.get(x, y));
}
}
};
}
ErrorOr<NonnullRefPtr<Bitmap>> to_bitmap(ImageMetadata& metadata) const
{
// FIXME: which channel size should we use?
auto const width = m_channels[0].width();
auto const height = m_channels[0].height();
auto const orientation = static_cast<TIFF::Orientation>(metadata.orientation);
auto oriented_bitmap = TRY(ExifOrientedBitmap::create(orientation, { width, height }, BitmapFormat::BGRA8888));
auto const alpha_channel = metadata.alpha_channel();
auto const bits_per_sample = metadata.bit_depth.bits_per_sample;
VERIFY(bits_per_sample >= 8);
for (u32 y {}; y < height; ++y) {
for (u32 x {}; x < width; ++x) {
auto const to_u8 = [&, bits_per_sample](i32 sample) -> u8 {
// FIXME: Don't truncate the result to 8 bits
static constexpr auto maximum_supported_bit_depth = 8;
if (bits_per_sample > maximum_supported_bit_depth)
sample >>= (bits_per_sample - maximum_supported_bit_depth);
return clamp(sample + .5, 0, (1 << maximum_supported_bit_depth) - 1);
};
auto const color = [&]() -> Color {
if (!alpha_channel.has_value()) {
return { to_u8(m_channels[0].get(x, y)),
to_u8(m_channels[1].get(x, y)),
to_u8(m_channels[2].get(x, y)) };
}
return {
to_u8(m_channels[0].get(x, y)),
to_u8(m_channels[1].get(x, y)),
to_u8(m_channels[2].get(x, y)),
to_u8(m_channels[*alpha_channel].get(x, y)),
};
}();
oriented_bitmap.set_pixel(x, y, color.value());
}
}
return oriented_bitmap.bitmap();
}
Vector<Channel>& channels()
{
return m_channels;
}
private:
Vector<Channel> m_channels;
};
///
/// H.5 - Self-correcting predictor
struct Neighborhood {
i32 N {};
i32 NW {};
i32 NE {};
i32 W {};
i32 NN {};
i32 WW {};
i32 NEE {};
};
class SelfCorrectingData {
public:
struct Predictions {
i32 prediction {};
Array<i32, 4> subpred {};
i32 max_error {};
i32 true_err {};
Array<i32, 4> err {};
};
static ErrorOr<SelfCorrectingData> create(WPHeader const& wp_params, u32 width)
{
SelfCorrectingData self_correcting_data { wp_params };
self_correcting_data.m_width = width;
self_correcting_data.m_previous = TRY(FixedArray<Predictions>::create(width));
self_correcting_data.m_current_row = TRY(FixedArray<Predictions>::create(width));
self_correcting_data.m_next_row = TRY(FixedArray<Predictions>::create(width));
return self_correcting_data;
}
void register_next_row()
{
auto tmp = move(m_previous);
m_previous = move(m_current_row);
m_current_row = move(m_next_row);
// We reuse m_previous to avoid an allocation, no values are kept
// everything will be overridden.
m_next_row = move(tmp);
m_current_row_index++;
}
Predictions compute_predictions(Neighborhood const& neighborhood, u32 x)
{
auto& current_predictions = m_next_row[x];
auto const N3 = neighborhood.N << 3;
auto const NW3 = neighborhood.NW << 3;
auto const NE3 = neighborhood.NE << 3;
auto const W3 = neighborhood.W << 3;
auto const NN3 = neighborhood.NN << 3;
auto const predictions_W = predictions_for(x, Direction::West);
auto const predictions_N = predictions_for(x, Direction::North);
auto const predictions_NE = predictions_for(x, Direction::NorthEast);
auto const predictions_NW = predictions_for(x, Direction::NorthWest);
auto const predictions_WW = predictions_for(x, Direction::WestWest);
current_predictions.subpred[0] = W3 + NE3 - N3;
current_predictions.subpred[1] = N3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NE.true_err) * wp_params.wp_p1) >> 5);
current_predictions.subpred[2] = W3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NW.true_err) * wp_params.wp_p2) >> 5);
current_predictions.subpred[3] = N3 - ((predictions_NW.true_err * wp_params.wp_p3a + predictions_N.true_err * wp_params.wp_p3b + predictions_NE.true_err * wp_params.wp_p3c + (NN3 - N3) * wp_params.wp_p3d + (NW3 - W3) * wp_params.wp_p3e) >> 5);
auto const error2weight = [](i32 err_sum, u8 maxweight) -> i32 {
i32 shift = floor(log2(err_sum + 1)) - 5;
if (shift < 0)
shift = 0;
return 4 + ((static_cast<u64>(maxweight) * ((1 << 24) / ((err_sum >> shift) + 1))) >> shift);
};
Array<i32, 4> weight {};
for (u8 i = 0; i < weight.size(); ++i) {
auto err_sum = predictions_N.err[i] + predictions_W.err[i] + predictions_NW.err[i] + predictions_WW.err[i] + predictions_NE.err[i];
if (x == m_width - 1)
err_sum += predictions_W.err[i];
weight[i] = error2weight(err_sum, wp_params.wp_w[i]);
}
auto sum_weights = weight[0] + weight[1] + weight[2] + weight[3];
i32 const log_weight = floor(log2(sum_weights)) + 1;
for (u8 i = 0; i < 4; i++)
weight[i] = weight[i] >> (log_weight - 5);
sum_weights = weight[0] + weight[1] + weight[2] + weight[3];
auto s = (sum_weights >> 1) - 1;
for (u8 i = 0; i < 4; i++)
s += current_predictions.subpred[i] * weight[i];
current_predictions.prediction = static_cast<u64>(s) * ((1 << 24) / sum_weights) >> 24;
// if true_err_N, true_err_W and true_err_NW don't have the same sign
if (((predictions_N.true_err ^ predictions_W.true_err) | (predictions_N.true_err ^ predictions_NW.true_err)) <= 0) {
current_predictions.prediction = clamp(current_predictions.prediction, min(W3, min(N3, NE3)), max(W3, max(N3, NE3)));
}
auto& max_error = current_predictions.max_error;
max_error = predictions_W.true_err;
if (abs(predictions_N.true_err) > abs(max_error))
max_error = predictions_N.true_err;
if (abs(predictions_NW.true_err) > abs(max_error))
max_error = predictions_NW.true_err;
if (abs(predictions_NE.true_err) > abs(max_error))
max_error = predictions_NE.true_err;
return current_predictions;
}
// H.5.1 - General
void compute_errors(u32 x, i32 true_value)
{
auto& current_predictions = m_next_row[x];
current_predictions.true_err = current_predictions.prediction - (true_value << 3);
for (u8 i = 0; i < 4; ++i)
current_predictions.err[i] = (abs(current_predictions.subpred[i] - (true_value << 3)) + 3) >> 3;
}
private:
SelfCorrectingData(WPHeader const& wp)
: wp_params(wp)
{
}
enum class Direction {
North,
NorthWest,
NorthEast,
West,
NorthNorth,
WestWest
};
Predictions predictions_for(u32 x, Direction direction) const
{
// H.5.2 - Prediction
auto const north = [&]() {
return m_current_row_index < 1 ? Predictions {} : m_current_row[x];
};
switch (direction) {
case Direction::North:
return north();
case Direction::NorthWest:
return x < 1 ? north() : m_current_row[x - 1];
case Direction::NorthEast:
return x + 1 >= m_current_row.size() ? north() : m_current_row[x + 1];
case Direction::West:
return x < 1 ? Predictions {} : m_next_row[x - 1];
case Direction::NorthNorth:
return m_current_row_index < 2 ? Predictions {} : m_previous[x];
case Direction::WestWest:
return x < 2 ? Predictions {} : m_next_row[x - 2];
}
VERIFY_NOT_REACHED();
}
WPHeader const& wp_params {};
u32 m_width {};
u32 m_current_row_index {};
FixedArray<Predictions> m_previous {};
FixedArray<Predictions> m_current_row {};
FixedArray<Predictions> m_next_row {};
};
///
/// H.2 - Image decoding
struct ModularHeader {
bool use_global_tree {};
WPHeader wp_params {};
Vector<TransformInfo> transform {};
};
static ErrorOr<Vector<i32>> get_properties(Vector<Channel> const& channels, u16 i, u32 x, u32 y, i32 max_error)
{
Vector<i32> properties;
// Table H.4 - Property definitions
TRY(properties.try_append(i));
// FIXME: Handle other cases than GlobalModular
TRY(properties.try_append(0));
TRY(properties.try_append(y));
TRY(properties.try_append(x));
i32 const W = x > 0 ? channels[i].get(x - 1, y) : (y > 0 ? channels[i].get(x, y - 1) : 0);
i32 const N = y > 0 ? channels[i].get(x, y - 1) : W;
i32 const NW = x > 0 && y > 0 ? channels[i].get(x - 1, y - 1) : W;
i32 const NE = x + 1 < channels[i].width() && y > 0 ? channels[i].get(x + 1, y - 1) : N;
i32 const NN = y > 1 ? channels[i].get(x, y - 2) : N;
i32 const WW = x > 1 ? channels[i].get(x - 2, y) : W;
TRY(properties.try_append(abs(N)));
TRY(properties.try_append(abs(W)));
TRY(properties.try_append(N));
TRY(properties.try_append(W));
// x > 0 ? W - /* (the value of property 9 at position (x - 1, y)) */ : W
if (x > 0) {
auto const x_1 = x - 1;
i32 const W_x_1 = x_1 > 0 ? channels[i].get(x_1 - 1, y) : (y > 0 ? channels[i].get(x_1, y - 1) : 0);
i32 const N_x_1 = y > 0 ? channels[i].get(x_1, y - 1) : W_x_1;
i32 const NW_x_1 = x_1 > 0 && y > 0 ? channels[i].get(x_1 - 1, y - 1) : W_x_1;
TRY(properties.try_append(W - (W_x_1 + N_x_1 - NW_x_1)));
} else {
TRY(properties.try_append(W));
}
TRY(properties.try_append(W + N - NW));
TRY(properties.try_append(W - NW));
TRY(properties.try_append(NW - N));
TRY(properties.try_append(N - NE));
TRY(properties.try_append(N - NN));
TRY(properties.try_append(W - WW));
TRY(properties.try_append(max_error));
for (i16 j = i - 1; j >= 0; j--) {
if (channels[j].width() != channels[i].width())
continue;
if (channels[j].height() != channels[i].height())
continue;
if (channels[j].hshift() != channels[i].hshift())
continue;
if (channels[j].vshift() != channels[i].vshift())
continue;
auto rC = channels[j].get(x, y);
auto rW = (x > 0 ? channels[j].get(x - 1, y) : 0);
auto rN = (y > 0 ? channels[j].get(x, y - 1) : rW);
auto rNW = (x > 0 && y > 0 ? channels[j].get(x - 1, y - 1) : rW);
auto rG = clamp(rW + rN - rNW, min(rW, rN), max(rW, rN));
TRY(properties.try_append(abs(rC)));
TRY(properties.try_append(rC));
TRY(properties.try_append(abs(rC - rG)));
TRY(properties.try_append(rC - rG));
}
return properties;
}
static i32 prediction(Neighborhood const& neighborhood, i32 self_correcting, u32 predictor)
{
switch (predictor) {
case 0:
return 0;
case 1:
return neighborhood.W;
case 2:
return neighborhood.N;
case 3:
return (neighborhood.W + neighborhood.N) / 2;
case 4:
return abs(neighborhood.N - neighborhood.NW) < abs(neighborhood.W - neighborhood.NW) ? neighborhood.W : neighborhood.N;
case 5:
return clamp(neighborhood.W + neighborhood.N - neighborhood.NW, min(neighborhood.W, neighborhood.N), max(neighborhood.W, neighborhood.N));
case 6:
return (self_correcting + 3) >> 3;
case 7:
return neighborhood.NE;
case 8:
return neighborhood.NW;
case 9:
return neighborhood.WW;
case 10:
return (neighborhood.W + neighborhood.NW) / 2;
case 11:
return (neighborhood.N + neighborhood.NW) / 2;
case 12:
return (neighborhood.N + neighborhood.NE) / 2;
case 13:
return (6 * neighborhood.N - 2 * neighborhood.NN + 7 * neighborhood.W + neighborhood.WW + neighborhood.NEE + 3 * neighborhood.NE + 8) / 16;
}
VERIFY_NOT_REACHED();
}
static Neighborhood retrieve_neighborhood(Channel const& channel, u32 x, u32 y)
{
i32 const W = x > 0 ? channel.get(x - 1, y) : (y > 0 ? channel.get(x, y - 1) : 0);
i32 const N = y > 0 ? channel.get(x, y - 1) : W;
i32 const NW = x > 0 && y > 0 ? channel.get(x - 1, y - 1) : W;
i32 const NE = x + 1 < channel.width() && y > 0 ? channel.get(x + 1, y - 1) : N;
i32 const NN = y > 1 ? channel.get(x, y - 2) : N;
i32 const WW = x > 1 ? channel.get(x - 2, y) : W;
i32 const NEE = x + 2 < channel.width() && y > 0 ? channel.get(x + 2, y - 1) : NE;
Neighborhood const neighborhood {
.N = N,
.NW = NW,
.NE = NE,
.W = W,
.NN = NN,
.WW = WW,
.NEE = NEE,
};
return neighborhood;
}
static ErrorOr<ModularHeader> read_modular_header(LittleEndianInputBitStream& stream,
Image& image,
ImageMetadata const& metadata,
Optional<EntropyDecoder>& decoder,
MATree const& global_tree,
u16 num_channels)
{
ModularHeader modular_header;
modular_header.use_global_tree = TRY(stream.read_bit());
modular_header.wp_params = TRY(read_self_correcting_predictor(stream));
auto const nb_transforms = U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(8)));
TRY(modular_header.transform.try_resize(nb_transforms));
for (u32 i {}; i < nb_transforms; ++i)
modular_header.transform[i] = TRY(read_transform_info(stream));
Optional<MATree> local_tree;
if (!modular_header.use_global_tree)
TODO();
// where dist_multiplier is set to the largest channel width amongst all channels
// that are to be decoded, excluding the meta-channels.
auto const dist_multiplier = [&]() {
u32 dist_multiplier {};
// FIXME: This should start at nb_meta_channels not 0
for (u16 i = 0; i < metadata.number_of_channels(); ++i) {
if (image.channels()[i].width() > dist_multiplier)
dist_multiplier = image.channels()[i].width();
}
return dist_multiplier;
}();
decoder->set_dist_multiplier(dist_multiplier);
// The decoder then starts an entropy-coded stream (C.1) and decodes the data for each channel
// (in ascending order of index) as specified in H.3, skipping any channels having width or height
// zero. Finally, the inverse transformations are applied (from last to first) as described in H.6.
auto const& tree = local_tree.has_value() ? *local_tree : global_tree;
for (u16 i {}; i < num_channels; ++i) {
auto self_correcting_data = TRY(SelfCorrectingData::create(modular_header.wp_params, image.channels()[i].width()));
for (u32 y {}; y < image.channels()[i].height(); y++) {
for (u32 x {}; x < image.channels()[i].width(); x++) {
auto const neighborhood = retrieve_neighborhood(image.channels()[i], x, y);
auto const self_prediction = self_correcting_data.compute_predictions(neighborhood, x);
auto const properties = TRY(get_properties(image.channels(), i, x, y, self_prediction.max_error));
auto const leaf_node = tree.get_leaf(properties);
auto diff = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, leaf_node.ctx)));
diff = (diff * leaf_node.multiplier) + leaf_node.offset;
auto const total = diff + prediction(neighborhood, self_prediction.prediction, leaf_node.predictor);
self_correcting_data.compute_errors(x, total);
image.channels()[i].set(x, y, total);
}
self_correcting_data.register_next_row();
}
image.channels()[i].set_decoded(true);
}
return modular_header;
}
///
/// G.1.2 - LF channel dequantization weights
struct GlobalModular {
MATree ma_tree;
ModularHeader modular_header;
};
static ErrorOr<GlobalModular> read_global_modular(LittleEndianInputBitStream& stream,
Image& image,
FrameHeader const& frame_header,
ImageMetadata const& metadata,
Optional<EntropyDecoder>& entropy_decoder)
{
GlobalModular global_modular;
auto const decode_ma_tree = TRY(stream.read_bit());
if (decode_ma_tree)
global_modular.ma_tree = TRY(MATree::decode(stream, entropy_decoder));
// The decoder then decodes a modular sub-bitstream (Annex H), where
// the number of channels is computed as follows:
auto num_channels = metadata.num_extra_channels;
if (frame_header.encoding == FrameHeader::Encoding::kModular) {
if (!frame_header.do_YCbCr && !metadata.xyb_encoded
&& metadata.colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) {
num_channels += 1;
} else {
num_channels += 3;
}
}
// FIXME: Ensure this spec comment:
// However, the decoder only decodes the first nb_meta_channels channels and any further channels
// that have a width and height that are both at most group_dim. At that point, it stops decoding.
// No inverse transforms are applied yet.
global_modular.modular_header = TRY(read_modular_header(stream, image, metadata, entropy_decoder, global_modular.ma_tree, num_channels));
return global_modular;
}
///
/// G.1 - LfGlobal
struct LfGlobal {
LfChannelDequantization lf_dequant;
GlobalModular gmodular;
};
static ErrorOr<LfGlobal> read_lf_global(LittleEndianInputBitStream& stream,
Image& image,
FrameHeader const& frame_header,
ImageMetadata const& metadata,
Optional<EntropyDecoder>& entropy_decoder)
{
LfGlobal lf_global;
if (frame_header.flags != FrameHeader::Flags::None)
TODO();
lf_global.lf_dequant = TRY(read_lf_channel_dequantization(stream));
if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
TODO();
lf_global.gmodular = TRY(read_global_modular(stream, image, frame_header, metadata, entropy_decoder));
return lf_global;
}
///
/// G.2 - LfGroup
static ErrorOr<void> read_lf_group(LittleEndianInputBitStream&,
Image& image,
FrameHeader const& frame_header)
{
// LF coefficients
if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
TODO();
}
// ModularLfGroup
for (auto const& channel : image.channels()) {
if (channel.decoded())
continue;
if (channel.hshift() < 3 || channel.vshift() < 3)
continue;
// This code actually only detect that we need to read a null image
// so a no-op. It should be fully rewritten when we add proper support
// for LfGroup.
TODO();
}
// HF metadata
if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
TODO();
}
return {};
}
///
/// H.6 - Transformations
static void apply_rct(Image& image, TransformInfo const& transformation)
{
auto& channels = image.channels();
for (u32 y {}; y < channels[transformation.begin_c].height(); y++) {
for (u32 x {}; x < channels[transformation.begin_c].width(); x++) {
auto a = channels[transformation.begin_c + 0].get(x, y);
auto b = channels[transformation.begin_c + 1].get(x, y);
auto c = channels[transformation.begin_c + 2].get(x, y);
i32 d {};
i32 e {};
i32 f {};
auto const permutation = transformation.rct_type / 7;
auto const type = transformation.rct_type % 7;
if (type == 6) { // YCgCo
auto const tmp = a - (c >> 1);
e = c + tmp;
f = tmp - (b >> 1);
d = f + b;
} else {
if (type & 1)
c = c + a;
if ((type >> 1) == 1)
b = b + a;
if ((type >> 1) == 2)
b = b + ((a + c) >> 1);
d = a;
e = b;
f = c;
}
Array<i32, 3> v {};
v[permutation % 3] = d;
v[(permutation + 1 + (permutation / 3)) % 3] = e;
v[(permutation + 2 - (permutation / 3)) % 3] = f;
channels[transformation.begin_c + 0].set(x, y, v[0]);
channels[transformation.begin_c + 1].set(x, y, v[1]);
channels[transformation.begin_c + 2].set(x, y, v[2]);
}
}
}
static void apply_transformation(Image& image, TransformInfo const& transformation)
{
switch (transformation.tr) {
case TransformInfo::TransformId::kRCT:
apply_rct(image, transformation);
break;
case TransformInfo::TransformId::kPalette:
case TransformInfo::TransformId::kSqueeze:
TODO();
default:
VERIFY_NOT_REACHED();
}
}
///
/// G.3.2 - PassGroup
static ErrorOr<void> read_pass_group(LittleEndianInputBitStream& stream,
Image& image,
FrameHeader const& frame_header,
u32 group_dim)
{
if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
(void)stream;
TODO();
}
auto& channels = image.channels();
for (u16 i {}; i < channels.size(); ++i) {
// Skip meta-channels
// FIXME: Also test if the channel has already been decoded
// See: nb_meta_channels in the spec
bool const is_meta_channel = channels[i].width() <= group_dim
|| channels[i].height() <= group_dim
|| channels[i].hshift() >= 3
|| channels[i].vshift() >= 3;
if (!is_meta_channel)
TODO();
}
return {};
}
///
/// Table F.1 — Frame bundle
struct Frame {
FrameHeader frame_header;
TOC toc;
LfGlobal lf_global;
u64 width {};
u64 height {};
u64 num_groups {};
u64 num_lf_groups {};
Image image {};
};
static ErrorOr<Frame> read_frame(LittleEndianInputBitStream& stream,
SizeHeader const& size_header,
ImageMetadata const& metadata,
Optional<EntropyDecoder>& entropy_decoder)
{
// F.1 - General
// Each Frame is byte-aligned by invoking ZeroPadToByte() (B.2.7)
stream.align_to_byte_boundary();
Frame frame;
frame.frame_header = TRY(read_frame_header(stream, size_header, metadata));
if (!frame.frame_header.have_crop) {
frame.width = size_header.width;
frame.height = size_header.height;
} else {
frame.width = frame.frame_header.width;
frame.height = frame.frame_header.height;
}
if (frame.frame_header.upsampling > 1) {
frame.width = ceil(static_cast<double>(frame.width) / frame.frame_header.upsampling);
frame.height = ceil(static_cast<double>(frame.height) / frame.frame_header.upsampling);
}
if (frame.frame_header.lf_level > 0)
TODO();
// F.2 - FrameHeader
auto const group_dim = 128 << frame.frame_header.group_size_shift;
auto const frame_width = static_cast<double>(frame.width);
auto const frame_height = static_cast<double>(frame.height);
frame.num_groups = ceil(frame_width / group_dim) * ceil(frame_height / group_dim);
frame.num_lf_groups = ceil(frame_width / (group_dim * 8)) * ceil(frame_height / (group_dim * 8));
frame.toc = TRY(read_toc(stream, frame.frame_header, frame.num_groups, frame.num_lf_groups));
frame.image = TRY(Image::create({ frame.width, frame.height }, metadata));
frame.lf_global = TRY(read_lf_global(stream, frame.image, frame.frame_header, metadata, entropy_decoder));
for (u32 i {}; i < frame.num_lf_groups; ++i)
TRY(read_lf_group(stream, frame.image, frame.frame_header));
if (frame.frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
TODO();
}
auto const num_pass_group = frame.num_groups * frame.frame_header.passes.num_passes;
auto const& transform_infos = frame.lf_global.gmodular.modular_header.transform;
for (u64 i {}; i < num_pass_group; ++i)
TRY(read_pass_group(stream, frame.image, frame.frame_header, group_dim));
// G.4.2 - Modular group data
// When all modular groups are decoded, the inverse transforms are applied to
// the at that point fully decoded GlobalModular image, as specified in H.6.
for (auto const& transformation : transform_infos.in_reverse())
apply_transformation(frame.image, transformation);
return frame;
}
///
/// 5.2 - Mirroring
static u32 mirror_1d(i32 coord, u32 size)
{
if (coord < 0)
return mirror_1d(-coord - 1, size);
else if (static_cast<u32>(coord) >= size)
return mirror_1d(2 * size - 1 - coord, size);
else
return coord;
}
///
/// K - Image features
static ErrorOr<void> apply_upsampling(Frame& frame, ImageMetadata const& metadata)
{
Optional<u32> ec_max;
for (auto upsampling : frame.frame_header.ec_upsampling) {
if (!ec_max.has_value() || upsampling > *ec_max)
ec_max = upsampling;
}
if (frame.frame_header.upsampling > 1 || ec_max.value_or(0) > 1) {
if (ec_max.value_or(0) > 2)
TODO();
auto const k = frame.frame_header.upsampling;
auto weight = [k, &metadata](u8 index) -> double {
if (k == 2)
return metadata.up2_weight[index];
if (k == 4)
return metadata.up4_weight[index];
return metadata.up8_weight[index];
};
// FIXME: Use ec_upsampling for extra-channels
for (auto& channel : frame.image.channels()) {
auto upsampled = TRY(Channel::create(k * channel.width(), k * channel.height()));
// Loop over the original image
for (u32 y {}; y < channel.height(); y++) {
for (u32 x {}; x < channel.width(); x++) {
// Loop over the upsampling factor
for (u8 kx {}; kx < k; ++kx) {
for (u8 ky {}; ky < k; ++ky) {
double sum {};
// Loop over the W window
double W_min = NumericLimits<double>::max();
double W_max = -NumericLimits<double>::max();
for (u8 ix {}; ix < 5; ++ix) {
for (u8 iy {}; iy < 5; ++iy) {
auto const j = (ky < k / 2) ? (iy + 5 * ky) : ((4 - iy) + 5 * (k - 1 - ky));
auto const i = (kx < k / 2) ? (ix + 5 * kx) : ((4 - ix) + 5 * (k - 1 - kx));
auto const minimum = min(i, j);
auto const maximum = max(i, j);
auto const index = 5 * k * minimum / 2 - minimum * (minimum - 1) / 2 + maximum - minimum;
auto const origin_sample_x = mirror_1d(x + ix - 2, channel.width());
auto const origin_sample_y = mirror_1d(y + iy - 2, channel.height());
auto const origin_sample = channel.get(origin_sample_x, origin_sample_y);
W_min = min(W_min, origin_sample);
W_max = max(W_max, origin_sample);
sum += origin_sample * weight(index);
}
}
// The resulting sample is clamped to the range [a, b] where a and b are
// the minimum and maximum of the samples in W.
sum = clamp(sum, W_min, W_max);
upsampled.set(x * k + kx, y * k + ky, sum);
}
}
}
}
channel = move(upsampled);
}
}
return {};
}
static ErrorOr<void> apply_image_features(Frame& frame, ImageMetadata const& metadata)
{
TRY(apply_upsampling(frame, metadata));
if (frame.frame_header.flags != FrameHeader::Flags::None)
TODO();
return {};
}
///
/// L.2 - XYB + L.3 - YCbCr
static void ycbcr_to_rgb(Image& image, u8 bits_per_sample)
{
auto& channels = image.channels();
VERIFY(channels.size() >= 3);
VERIFY(channels[0].width() == channels[1].width() && channels[1].width() == channels[2].width());
VERIFY(channels[0].height() == channels[1].height() && channels[1].height() == channels[2].height());
auto const half_range_offset = (1 << bits_per_sample) / 2;
for (u32 y = 0; y < channels[0].height(); ++y) {
for (u32 x = 0; x < channels[0].width(); ++x) {
auto const cb = channels[0].get(x, y);
auto const luma = channels[1].get(x, y);
auto const cr = channels[2].get(x, y);
channels[0].set(x, y, luma + half_range_offset + 1.402 * cr);
channels[1].set(x, y, luma + half_range_offset - 0.344136 * cb - 0.714136 * cr);
channels[2].set(x, y, luma + half_range_offset + 1.772 * cb);
}
}
}
static void apply_colour_transformation(Frame& frame, ImageMetadata const& metadata)
{
if (frame.frame_header.do_YCbCr)
ycbcr_to_rgb(frame.image, metadata.bit_depth.bits_per_sample);
if (metadata.xyb_encoded) {
TODO();
} else {
// FIXME: Do a proper color transformation with metadata.colour_encoding
}
}
///
/// L.4 - Extra channel rendering
static ErrorOr<void> render_extra_channels(Image&, ImageMetadata const& metadata)
{
for (u16 i = metadata.number_of_color_channels(); i < metadata.number_of_channels(); ++i) {
auto const ec_index = i - metadata.number_of_color_channels();
if (metadata.ec_info[ec_index].dim_shift != 0)
TODO();
}
return {};
}
///
class JPEGXLLoadingContext {
public:
JPEGXLLoadingContext(NonnullOwnPtr<Stream> stream)
: m_stream(move(stream))
{
}
ErrorOr<void> decode_image_header()
{
constexpr auto JPEGXL_SIGNATURE = 0xFF0A;
auto const signature = TRY(m_stream.read_value<BigEndian<u16>>());
if (signature != JPEGXL_SIGNATURE)
return Error::from_string_literal("Unrecognized signature");
m_header = TRY(read_size_header(m_stream));
m_metadata = TRY(read_metadata_header(m_stream));
m_state = State::HeaderDecoded;
return {};
}
ErrorOr<void> decode_frame()
{
auto frame = TRY(read_frame(m_stream, m_header, m_metadata, m_entropy_decoder));
if (frame.frame_header.restoration_filter.gab || frame.frame_header.restoration_filter.epf_iters != 0)
TODO();
TRY(apply_image_features(frame, m_metadata));
apply_colour_transformation(frame, m_metadata);
TRY(render_extra_channels(frame.image, m_metadata));
if (!m_image.has_value())
m_image = TRY(Image::create({ m_header.width, m_header.height }, m_metadata));
frame.image.blend_into(*m_image, frame.frame_header);
return {};
}
ErrorOr<void> decode()
{
auto result = [this]() -> ErrorOr<void> {
// A.1 - Codestream structure
// The header is already decoded in JPEGXLImageDecoderPlugin::create()
if (m_metadata.colour_encoding.want_icc)
TODO();
if (m_metadata.preview.has_value())
TODO();
TRY(decode_frame());
m_bitmap = TRY(m_image->to_bitmap(m_metadata));
m_image.clear();
return {};
}();
m_state = result.is_error() ? State::Error : State::FrameDecoded;
return result;
}
enum class State {
NotDecoded = 0,
Error,
HeaderDecoded,
FrameDecoded,
};
State state() const
{
return m_state;
}
IntSize size() const
{
return { m_header.width, m_header.height };
}
RefPtr<Bitmap> bitmap() const
{
return m_bitmap;
}
private:
State m_state { State::NotDecoded };
LittleEndianInputBitStream m_stream;
RefPtr<Gfx::Bitmap> m_bitmap;
// JPEG XL images can be composed of multiples sub-images, this variable is an internal
// representation of this blending before the final rendering (in m_bitmap)
Optional<Image> m_image;
Optional<EntropyDecoder> m_entropy_decoder {};
SizeHeader m_header;
ImageMetadata m_metadata;
};
JPEGXLImageDecoderPlugin::JPEGXLImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
{
m_context = make<JPEGXLLoadingContext>(move(stream));
}
JPEGXLImageDecoderPlugin::~JPEGXLImageDecoderPlugin() = default;
IntSize JPEGXLImageDecoderPlugin::size()
{
return m_context->size();
}
bool JPEGXLImageDecoderPlugin::sniff(ReadonlyBytes data)
{
return data.size() > 2
&& data.data()[0] == 0xFF
&& data.data()[1] == 0x0A;
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGXLImageDecoderPlugin::create(ReadonlyBytes data)
{
auto stream = TRY(try_make<FixedMemoryStream>(data));
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JPEGXLImageDecoderPlugin(move(stream))));
TRY(plugin->m_context->decode_image_header());
return plugin;
}
bool JPEGXLImageDecoderPlugin::is_animated()
{
return false;
}
size_t JPEGXLImageDecoderPlugin::loop_count()
{
return 0;
}
size_t JPEGXLImageDecoderPlugin::frame_count()
{
return 1;
}
size_t JPEGXLImageDecoderPlugin::first_animated_frame_index()
{
return 0;
}
ErrorOr<ImageFrameDescriptor> JPEGXLImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
{
if (index > 0)
return Error::from_string_literal("JPEGXLImageDecoderPlugin: Invalid frame index");
if (m_context->state() == JPEGXLLoadingContext::State::Error)
return Error::from_string_literal("JPEGXLImageDecoderPlugin: Decoding failed");
if (m_context->state() < JPEGXLLoadingContext::State::FrameDecoded)
TRY(m_context->decode());
return ImageFrameDescriptor { m_context->bitmap(), 0 };
}
ErrorOr<Optional<ReadonlyBytes>> JPEGXLImageDecoderPlugin::icc_data()
{
return OptionalNone {};
}
}