Merge pull request #2220 from vdemeester/to-gotest.tools

Migrate to gotest.tools :)
This commit is contained in:
Flavio Crisciani 2018-07-06 16:15:13 -07:00 committed by GitHub
commit 968b269ec8
62 changed files with 4126 additions and 8716 deletions

View file

@ -7,7 +7,7 @@ import (
"github.com/docker/libnetwork/options"
_ "github.com/docker/libnetwork/testutils"
"github.com/stretchr/testify/assert"
"gotest.tools/assert"
)
var dummyKey = "dummy"
@ -68,12 +68,12 @@ func TestKVObjectFlatKey(t *testing.T) {
func TestAtomicKVObjectFlatKey(t *testing.T) {
store := NewTestDataStore()
expected := dummyKVObject("1111", true)
assert.False(t, expected.Exists())
assert.Check(t, !expected.Exists())
err := store.PutObjectAtomic(expected)
if err != nil {
t.Fatal(err)
}
assert.True(t, expected.Exists())
assert.Check(t, expected.Exists())
// PutObjectAtomic automatically sets the Index again. Hence the following must pass.
@ -104,7 +104,7 @@ func TestAtomicKVObjectFlatKey(t *testing.T) {
if err != nil {
t.Fatal(err)
}
assert.True(t, newObj.Exists())
assert.Check(t, newObj.Exists())
err = store.PutObjectAtomic(&n)
if err != nil {
t.Fatal(err)

View file

@ -11,8 +11,8 @@ import (
"github.com/docker/libnetwork/netlabel"
_ "github.com/docker/libnetwork/testutils"
"github.com/docker/libnetwork/types"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
func newDriver(t *testing.T) *driver {
@ -21,7 +21,7 @@ func newDriver(t *testing.T) *driver {
}
vxlanIdm, err := idm.New(nil, "vxlan-id", vxlanIDStart, vxlanIDEnd)
require.NoError(t, err)
assert.NilError(t, err)
d.vxlanIdm = vxlanIdm
return d
@ -29,7 +29,7 @@ func newDriver(t *testing.T) *driver {
func parseCIDR(t *testing.T, ipnet string) *net.IPNet {
subnet, err := types.ParseCIDR(ipnet)
require.NoError(t, err)
assert.NilError(t, err)
return subnet
}
@ -46,14 +46,14 @@ func TestNetworkAllocateFree(t *testing.T) {
}
vals, err := d.NetworkAllocate("testnetwork", nil, ipamData, nil)
require.NoError(t, err)
assert.NilError(t, err)
vxlanIDs, ok := vals[netlabel.OverlayVxlanIDList]
assert.Equal(t, true, ok)
assert.Equal(t, 2, len(strings.Split(vxlanIDs, ",")))
assert.Check(t, is.Equal(true, ok))
assert.Check(t, is.Len(strings.Split(vxlanIDs, ","), 2))
err = d.NetworkFree("testnetwork")
require.NoError(t, err)
assert.NilError(t, err)
}
func TestNetworkAllocateUserDefinedVNIs(t *testing.T) {
@ -73,16 +73,16 @@ func TestNetworkAllocateUserDefinedVNIs(t *testing.T) {
options[netlabel.OverlayVxlanIDList] = fmt.Sprintf("%d,%d,%d", vxlanIDStart, vxlanIDStart+1, vxlanIDStart+2)
vals, err := d.NetworkAllocate("testnetwork", options, ipamData, nil)
require.NoError(t, err)
assert.NilError(t, err)
vxlanIDs, ok := vals[netlabel.OverlayVxlanIDList]
assert.Equal(t, true, ok)
assert.Check(t, is.Equal(true, ok))
// We should only get exactly the same number of vnis as
// subnets. No more, no less, even if we passed more vnis.
assert.Equal(t, 2, len(strings.Split(vxlanIDs, ",")))
assert.Equal(t, fmt.Sprintf("%d,%d", vxlanIDStart, vxlanIDStart+1), vxlanIDs)
assert.Check(t, is.Len(strings.Split(vxlanIDs, ","), 2))
assert.Check(t, is.Equal(fmt.Sprintf("%d,%d", vxlanIDStart, vxlanIDStart+1), vxlanIDs))
err = d.NetworkFree("testnetwork")
require.NoError(t, err)
assert.NilError(t, err)
}

View file

@ -11,7 +11,8 @@ import (
builtinIpam "github.com/docker/libnetwork/ipams/builtin"
nullIpam "github.com/docker/libnetwork/ipams/null"
remoteIpam "github.com/docker/libnetwork/ipams/remote"
"github.com/stretchr/testify/assert"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
// this takes care of the incontainer flag
_ "github.com/docker/libnetwork/testutils"
@ -128,46 +129,46 @@ func TestAddDriver(t *testing.T) {
reg := getNew(t)
err := reg.AddDriver(mockDriverName, mockDriverInit, nil)
assert.NoError(t, err)
assert.NilError(t, err)
}
func TestAddDuplicateDriver(t *testing.T) {
reg := getNew(t)
err := reg.AddDriver(mockDriverName, mockDriverInit, nil)
assert.NoError(t, err)
assert.NilError(t, err)
// Try adding the same driver
err = reg.AddDriver(mockDriverName, mockDriverInit, nil)
assert.Error(t, err)
assert.Check(t, is.ErrorContains(err, ""))
}
func TestIPAMDefaultAddressSpaces(t *testing.T) {
reg := getNew(t)
as1, as2, err := reg.IPAMDefaultAddressSpaces("default")
assert.NoError(t, err)
assert.NotEqual(t, as1, "")
assert.NotEqual(t, as2, "")
assert.NilError(t, err)
assert.Check(t, as1 != "")
assert.Check(t, as2 != "")
}
func TestDriver(t *testing.T) {
reg := getNew(t)
err := reg.AddDriver(mockDriverName, mockDriverInit, nil)
assert.NoError(t, err)
assert.NilError(t, err)
d, cap := reg.Driver(mockDriverName)
assert.NotEqual(t, d, nil)
assert.NotEqual(t, cap, nil)
assert.Check(t, d != nil)
assert.Check(t, cap != nil)
}
func TestIPAM(t *testing.T) {
reg := getNew(t)
i, cap := reg.IPAM("default")
assert.NotEqual(t, i, nil)
assert.NotEqual(t, cap, nil)
assert.Check(t, i != nil)
assert.Check(t, cap != nil)
}
func TestWalkIPAMs(t *testing.T) {
@ -180,14 +181,14 @@ func TestWalkIPAMs(t *testing.T) {
})
sort.Strings(ipams)
assert.Equal(t, ipams, []string{"default", "null"})
assert.Check(t, is.DeepEqual(ipams, []string{"default", "null"}))
}
func TestWalkDrivers(t *testing.T) {
reg := getNew(t)
err := reg.AddDriver(mockDriverName, mockDriverInit, nil)
assert.NoError(t, err)
assert.NilError(t, err)
var driverName string
reg.WalkDrivers(func(name string, driver driverapi.Driver, capability driverapi.Capability) bool {
@ -195,5 +196,5 @@ func TestWalkDrivers(t *testing.T) {
return false
})
assert.Equal(t, driverName, mockDriverName)
assert.Check(t, is.Equal(driverName, mockDriverName))
}

View file

@ -20,7 +20,8 @@ import (
"github.com/docker/libnetwork/ipamutils"
_ "github.com/docker/libnetwork/testutils"
"github.com/docker/libnetwork/types"
"github.com/stretchr/testify/assert"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
const (
@ -287,23 +288,23 @@ func TestAddSubnets(t *testing.T) {
func TestDoublePoolRelease(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
pid0, _, _, err := a.RequestPool(localAddressSpace, "10.0.0.0/8", "", nil, false)
assert.NoError(t, err)
assert.NilError(t, err)
err = a.ReleasePool(pid0)
assert.NoError(t, err)
assert.NilError(t, err)
err = a.ReleasePool(pid0)
assert.Error(t, err)
assert.Check(t, is.ErrorContains(err, ""))
}
}
func TestAddReleasePoolID(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
var k0, k1 SubnetKey
aSpace, err := a.getAddrSpace(localAddressSpace)
@ -437,7 +438,7 @@ func TestAddReleasePoolID(t *testing.T) {
func TestPredefinedPool(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
if _, err := a.getPredefinedPool("blue", false); err == nil {
t.Fatal("Expected failure for non default addr space")
@ -465,7 +466,7 @@ func TestPredefinedPool(t *testing.T) {
func TestRemoveSubnet(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
a.addrSpaces["splane"] = &addrSpace{
id: dsConfigKey + "/" + "splane",
@ -509,7 +510,7 @@ func TestRemoveSubnet(t *testing.T) {
func TestGetSameAddress(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
a.addrSpaces["giallo"] = &addrSpace{
id: dsConfigKey + "/" + "giallo",
@ -540,7 +541,7 @@ func TestGetSameAddress(t *testing.T) {
func TestPoolAllocationReuse(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
// First get all pools until they are exhausted to
pList := []string{}
@ -579,7 +580,7 @@ func TestPoolAllocationReuse(t *testing.T) {
func TestGetAddressSubPoolEqualPool(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
// Requesting a subpool of same size of the master pool should not cause any problem on ip allocation
pid, _, _, err := a.RequestPool(localAddressSpace, "172.18.0.0/16", "172.18.0.0/16", nil, false)
@ -597,7 +598,7 @@ func TestGetAddressSubPoolEqualPool(t *testing.T) {
func TestRequestReleaseAddressFromSubPool(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
a.addrSpaces["rosso"] = &addrSpace{
id: dsConfigKey + "/" + "rosso",
@ -730,7 +731,7 @@ func TestSerializeRequestReleaseAddressFromSubPool(t *testing.T) {
ipamapi.AllocSerialPrefix: "true"}
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
a.addrSpaces["rosso"] = &addrSpace{
id: dsConfigKey + "/" + "rosso",
@ -880,7 +881,7 @@ func TestRequestSyntaxCheck(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
a.addrSpaces[as] = &addrSpace{
id: dsConfigKey + "/" + as,
@ -1036,20 +1037,20 @@ func TestOverlappingRequests(t *testing.T) {
for _, store := range []bool{false, true} {
for _, tc := range input {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
// Set up some existing allocations. This should always succeed.
for _, env := range tc.environment {
_, _, _, err = a.RequestPool(localAddressSpace, env, "", nil, false)
assert.NoError(t, err)
assert.NilError(t, err)
}
// Make the test allocation.
_, _, _, err = a.RequestPool(localAddressSpace, tc.subnet, "", nil, false)
if tc.ok {
assert.NoError(t, err)
assert.NilError(t, err)
} else {
assert.Error(t, err)
assert.Check(t, is.ErrorContains(err, ""))
}
}
}
@ -1062,7 +1063,7 @@ func TestRelease(t *testing.T) {
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
pid, _, _, err := a.RequestPool(localAddressSpace, subnet, "", nil, false)
if err != nil {
@ -1170,7 +1171,7 @@ func assertNRequests(t *testing.T, subnet string, numReq int, lastExpectedIP str
lastIP := net.ParseIP(lastExpectedIP)
for _, store := range []bool{false, true} {
a, err := getAllocator(store)
assert.NoError(t, err)
assert.NilError(t, err)
pid, _, _, err := a.RequestPool(localAddressSpace, subnet, "", nil, false)
if err != nil {
@ -1232,7 +1233,7 @@ func TestAllocateRandomDeallocate(t *testing.T) {
func testAllocateRandomDeallocate(t *testing.T, pool, subPool string, num int, store bool) {
ds, err := randomLocalStore(store)
assert.NoError(t, err)
assert.NilError(t, err)
a, err := NewAllocator(ds, nil)
if err != nil {

View file

@ -12,8 +12,9 @@ import (
"time"
"github.com/docker/libnetwork/ipamapi"
"github.com/stretchr/testify/assert"
"golang.org/x/sync/semaphore"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
const (
@ -217,7 +218,7 @@ func allocate(t *testing.T, tctx *testContext, parallel int64) {
tctx.ipMap[ip.String()] = true
}
assert.Len(t, tctx.ipList, tctx.maxIP)
assert.Check(t, is.Len(tctx.ipList, tctx.maxIP))
if len(tctx.ipList) != tctx.maxIP {
t.Fatal("missmatch number allocation")
}
@ -281,12 +282,12 @@ func release(t *testing.T, tctx *testContext, mode releaseMode, parallel int64)
// check if it is really free
_, _, err := tctx.a.RequestAddress(tctx.pid, ip.IP, nil)
assert.NoError(t, err, "ip %v not properly released", ip)
assert.Check(t, err, "ip %v not properly released", ip)
if err != nil {
t.Fatalf("ip %v not properly released, error:%v", ip, err)
}
err = tctx.a.ReleaseAddress(tctx.pid, ip.IP)
assert.NoError(t, err)
assert.NilError(t, err)
if there, ok := tctx.ipMap[ip.String()]; !ok || !there {
t.Fatalf("ip %v got double deallocated", ip)
@ -300,5 +301,5 @@ func release(t *testing.T, tctx *testContext, mode releaseMode, parallel int64)
}
}
assert.Len(t, tctx.ipList, tctx.maxIP-length)
assert.Check(t, is.Len(tctx.ipList, tctx.maxIP-length))
}

View file

@ -6,7 +6,8 @@ import (
"testing"
_ "github.com/docker/libnetwork/testutils"
"github.com/stretchr/testify/assert"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
func initBroadPredefinedNetworks() []*net.IPNet {
@ -54,11 +55,11 @@ func TestDefaultNetwork(t *testing.T) {
}
for _, nw := range PredefinedBroadNetworks {
_, ok := m[nw.String()]
assert.True(t, ok)
assert.Check(t, ok)
delete(m, nw.String())
}
assert.Len(t, m, 0)
assert.Check(t, is.Len(m, 0))
originalGranularNets := initGranularPredefinedNetworks()
@ -68,11 +69,11 @@ func TestDefaultNetwork(t *testing.T) {
}
for _, nw := range PredefinedGranularNetworks {
_, ok := m[nw.String()]
assert.True(t, ok)
assert.Check(t, ok)
delete(m, nw.String())
}
assert.Len(t, m, 0)
assert.Check(t, is.Len(m, 0))
}
func TestInitAddressPools(t *testing.T) {
@ -80,11 +81,11 @@ func TestInitAddressPools(t *testing.T) {
InitNetworks([]*NetworkToSplit{{"172.80.0.0/16", 24}, {"172.90.0.0/16", 24}})
// Check for Random IPAddresses in PredefinedBroadNetworks ex: first , last and middle
assert.Len(t, PredefinedBroadNetworks, 512, "Failed to find PredefinedBroadNetworks")
assert.Equal(t, PredefinedBroadNetworks[0].String(), "172.80.0.0/24")
assert.Equal(t, PredefinedBroadNetworks[127].String(), "172.80.127.0/24")
assert.Equal(t, PredefinedBroadNetworks[255].String(), "172.80.255.0/24")
assert.Equal(t, PredefinedBroadNetworks[256].String(), "172.90.0.0/24")
assert.Equal(t, PredefinedBroadNetworks[383].String(), "172.90.127.0/24")
assert.Equal(t, PredefinedBroadNetworks[511].String(), "172.90.255.0/24")
assert.Check(t, is.Len(PredefinedBroadNetworks, 512), "Failed to find PredefinedBroadNetworks")
assert.Check(t, is.Equal(PredefinedBroadNetworks[0].String(), "172.80.0.0/24"))
assert.Check(t, is.Equal(PredefinedBroadNetworks[127].String(), "172.80.127.0/24"))
assert.Check(t, is.Equal(PredefinedBroadNetworks[255].String(), "172.80.255.0/24"))
assert.Check(t, is.Equal(PredefinedBroadNetworks[256].String(), "172.90.0.0/24"))
assert.Check(t, is.Equal(PredefinedBroadNetworks[383].String(), "172.90.127.0/24"))
assert.Check(t, is.Equal(PredefinedBroadNetworks[511].String(), "172.90.255.0/24"))
}

View file

@ -8,10 +8,10 @@ import (
"testing"
"github.com/docker/libnetwork/testutils"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/vishvananda/netlink"
"github.com/vishvananda/netlink/nl"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
var (
@ -58,7 +58,7 @@ func checkDestination(t *testing.T, i *Handle, s *Service, d *Destination, check
var dstFound bool
dstArray, err := i.GetDestinations(s)
require.NoError(t, err)
assert.NilError(t, err)
for _, dst := range dstArray {
if dst.Address.Equal(d.Address) && dst.Port == d.Port && lookupFwMethod(dst.ConnectionFlags) == lookupFwMethod(d.ConnectionFlags) {
@ -84,7 +84,7 @@ func checkDestination(t *testing.T, i *Handle, s *Service, d *Destination, check
func checkService(t *testing.T, i *Handle, s *Service, checkPresent bool) {
svcArray, err := i.GetServices()
require.NoError(t, err)
assert.NilError(t, err)
var svcFound bool
@ -116,8 +116,8 @@ func TestGetFamily(t *testing.T) {
}
id, err := getIPVSFamily()
require.NoError(t, err)
assert.NotEqual(t, 0, id)
assert.NilError(t, err)
assert.Check(t, 0 != id)
}
func TestService(t *testing.T) {
@ -128,7 +128,7 @@ func TestService(t *testing.T) {
defer testutils.SetupTestOSContext(t)()
i, err := New("")
require.NoError(t, err)
assert.NilError(t, err)
for _, protocol := range protocols {
for _, schedMethod := range schedMethods {
@ -153,7 +153,7 @@ func TestService(t *testing.T) {
}
err := i.NewService(&s)
assert.NoError(t, err)
assert.NilError(t, err)
checkService(t, i, &s, true)
for _, updateSchedMethod := range schedMethods {
if updateSchedMethod == schedMethod {
@ -162,18 +162,18 @@ func TestService(t *testing.T) {
s.SchedName = updateSchedMethod
err = i.UpdateService(&s)
assert.NoError(t, err)
assert.NilError(t, err)
checkService(t, i, &s, true)
scopy, err := i.GetService(&s)
assert.NoError(t, err)
assert.Equal(t, (*scopy).Address.String(), s.Address.String())
assert.Equal(t, (*scopy).Port, s.Port)
assert.Equal(t, (*scopy).Protocol, s.Protocol)
assert.NilError(t, err)
assert.Check(t, is.Equal((*scopy).Address.String(), s.Address.String()))
assert.Check(t, is.Equal((*scopy).Port, s.Port))
assert.Check(t, is.Equal((*scopy).Protocol, s.Protocol))
}
err = i.DelService(&s)
assert.NoError(t, err)
assert.NilError(t, err)
checkService(t, i, &s, false)
}
}
@ -200,16 +200,16 @@ func TestService(t *testing.T) {
for _, svc := range svcs {
if !i.IsServicePresent(&svc) {
err = i.NewService(&svc)
assert.NoError(t, err)
assert.NilError(t, err)
checkService(t, i, &svc, true)
} else {
t.Errorf("svc: %v exists", svc)
}
}
err = i.Flush()
assert.NoError(t, err)
assert.NilError(t, err)
got, err := i.GetServices()
assert.NoError(t, err)
assert.NilError(t, err)
if len(got) != 0 {
t.Errorf("Unexpected services after flush")
}
@ -227,19 +227,19 @@ func createDummyInterface(t *testing.T) {
}
err := netlink.LinkAdd(dummy)
require.NoError(t, err)
assert.NilError(t, err)
dummyLink, err := netlink.LinkByName("dummy")
require.NoError(t, err)
assert.NilError(t, err)
ip, ipNet, err := net.ParseCIDR("10.1.1.1/24")
require.NoError(t, err)
assert.NilError(t, err)
ipNet.IP = ip
ipAddr := &netlink.Addr{IPNet: ipNet, Label: ""}
err = netlink.AddrAdd(dummyLink, ipAddr)
require.NoError(t, err)
assert.NilError(t, err)
}
func TestDestination(t *testing.T) {
@ -247,7 +247,7 @@ func TestDestination(t *testing.T) {
createDummyInterface(t)
i, err := New("")
require.NoError(t, err)
assert.NilError(t, err)
for _, protocol := range protocols {
@ -271,7 +271,7 @@ func TestDestination(t *testing.T) {
}
err := i.NewService(&s)
assert.NoError(t, err)
assert.NilError(t, err)
checkService(t, i, &s, true)
s.SchedName = ""
@ -285,7 +285,7 @@ func TestDestination(t *testing.T) {
}
err := i.NewDestination(&s, &d1)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d1, true)
d2 := Destination{
AddressFamily: nl.FAMILY_V4,
@ -296,7 +296,7 @@ func TestDestination(t *testing.T) {
}
err = i.NewDestination(&s, &d2)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d2, true)
d3 := Destination{
@ -308,7 +308,7 @@ func TestDestination(t *testing.T) {
}
err = i.NewDestination(&s, &d3)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d3, true)
for _, updateFwdMethod := range fwdMethods {
@ -317,26 +317,26 @@ func TestDestination(t *testing.T) {
}
d1.ConnectionFlags = updateFwdMethod
err = i.UpdateDestination(&s, &d1)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d1, true)
d2.ConnectionFlags = updateFwdMethod
err = i.UpdateDestination(&s, &d2)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d2, true)
d3.ConnectionFlags = updateFwdMethod
err = i.UpdateDestination(&s, &d3)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d3, true)
}
err = i.DelDestination(&s, &d1)
assert.NoError(t, err)
assert.NilError(t, err)
err = i.DelDestination(&s, &d2)
assert.NoError(t, err)
assert.NilError(t, err)
err = i.DelDestination(&s, &d3)
assert.NoError(t, err)
assert.NilError(t, err)
checkDestination(t, i, &s, &d3, false)
}

View file

@ -15,8 +15,8 @@ import (
"github.com/docker/go-events"
"github.com/hashicorp/memberlist"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
// this takes care of the incontainer flag
_ "github.com/docker/libnetwork/testutils"
@ -32,7 +32,7 @@ func TestMain(m *testing.M) {
func launchNode(t *testing.T, conf Config) *NetworkDB {
db, err := New(&conf)
require.NoError(t, err)
assert.NilError(t, err)
return db
}
@ -45,7 +45,7 @@ func createNetworkDBInstances(t *testing.T, num int, namePrefix string, conf *Co
localConfig.BindPort = int(atomic.AddInt32(&dbPort, 1))
db := launchNode(t, localConfig)
if i != 0 {
assert.NoError(t, db.Join([]string{fmt.Sprintf("localhost:%d", db.config.BindPort-1)}))
assert.Check(t, db.Join([]string{fmt.Sprintf("localhost:%d", db.config.BindPort-1)}))
}
dbs = append(dbs, db)
@ -85,7 +85,7 @@ func (db *NetworkDB) verifyNodeExistence(t *testing.T, node string, present bool
time.Sleep(50 * time.Millisecond)
}
assert.Fail(t, fmt.Sprintf("%v(%v): Node existence verification for node %s failed", db.config.Hostname, db.config.NodeID, node))
t.Error(fmt.Sprintf("%v(%v): Node existence verification for node %s failed", db.config.Hostname, db.config.NodeID, node))
}
func (db *NetworkDB) verifyNetworkExistence(t *testing.T, node string, id string, present bool) {
@ -109,7 +109,7 @@ func (db *NetworkDB) verifyNetworkExistence(t *testing.T, node string, id string
time.Sleep(50 * time.Millisecond)
}
assert.Fail(t, "Network existence verification failed")
t.Error("Network existence verification failed")
}
func (db *NetworkDB) verifyEntryExistence(t *testing.T, tname, nid, key, value string, present bool) {
@ -133,28 +133,28 @@ func (db *NetworkDB) verifyEntryExistence(t *testing.T, tname, nid, key, value s
time.Sleep(50 * time.Millisecond)
}
assert.Fail(t, fmt.Sprintf("Entry existence verification test failed for %v(%v)", db.config.Hostname, db.config.NodeID))
t.Error(fmt.Sprintf("Entry existence verification test failed for %v(%v)", db.config.Hostname, db.config.NodeID))
}
func testWatch(t *testing.T, ch chan events.Event, ev interface{}, tname, nid, key, value string) {
select {
case rcvdEv := <-ch:
assert.Equal(t, fmt.Sprintf("%T", rcvdEv), fmt.Sprintf("%T", ev))
assert.Check(t, is.Equal(fmt.Sprintf("%T", rcvdEv), fmt.Sprintf("%T", ev)))
switch rcvdEv.(type) {
case CreateEvent:
assert.Equal(t, tname, rcvdEv.(CreateEvent).Table)
assert.Equal(t, nid, rcvdEv.(CreateEvent).NetworkID)
assert.Equal(t, key, rcvdEv.(CreateEvent).Key)
assert.Equal(t, value, string(rcvdEv.(CreateEvent).Value))
assert.Check(t, is.Equal(tname, rcvdEv.(CreateEvent).Table))
assert.Check(t, is.Equal(nid, rcvdEv.(CreateEvent).NetworkID))
assert.Check(t, is.Equal(key, rcvdEv.(CreateEvent).Key))
assert.Check(t, is.Equal(value, string(rcvdEv.(CreateEvent).Value)))
case UpdateEvent:
assert.Equal(t, tname, rcvdEv.(UpdateEvent).Table)
assert.Equal(t, nid, rcvdEv.(UpdateEvent).NetworkID)
assert.Equal(t, key, rcvdEv.(UpdateEvent).Key)
assert.Equal(t, value, string(rcvdEv.(UpdateEvent).Value))
assert.Check(t, is.Equal(tname, rcvdEv.(UpdateEvent).Table))
assert.Check(t, is.Equal(nid, rcvdEv.(UpdateEvent).NetworkID))
assert.Check(t, is.Equal(key, rcvdEv.(UpdateEvent).Key))
assert.Check(t, is.Equal(value, string(rcvdEv.(UpdateEvent).Value)))
case DeleteEvent:
assert.Equal(t, tname, rcvdEv.(DeleteEvent).Table)
assert.Equal(t, nid, rcvdEv.(DeleteEvent).NetworkID)
assert.Equal(t, key, rcvdEv.(DeleteEvent).Key)
assert.Check(t, is.Equal(tname, rcvdEv.(DeleteEvent).Table))
assert.Check(t, is.Equal(nid, rcvdEv.(DeleteEvent).NetworkID))
assert.Check(t, is.Equal(key, rcvdEv.(DeleteEvent).Key))
}
case <-time.After(time.Second):
t.Fail()
@ -171,12 +171,12 @@ func TestNetworkDBJoinLeaveNetwork(t *testing.T) {
dbs := createNetworkDBInstances(t, 2, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyNetworkExistence(t, dbs[0].config.NodeID, "network1", true)
err = dbs[0].LeaveNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyNetworkExistence(t, dbs[0].config.NodeID, "network1", false)
closeNetworkDBInstances(dbs)
@ -188,12 +188,12 @@ func TestNetworkDBJoinLeaveNetworks(t *testing.T) {
n := 10
for i := 1; i <= n; i++ {
err := dbs[0].JoinNetwork(fmt.Sprintf("network0%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
err := dbs[1].JoinNetwork(fmt.Sprintf("network1%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
@ -206,12 +206,12 @@ func TestNetworkDBJoinLeaveNetworks(t *testing.T) {
for i := 1; i <= n; i++ {
err := dbs[0].LeaveNetwork(fmt.Sprintf("network0%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
err := dbs[1].LeaveNetwork(fmt.Sprintf("network1%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
@ -229,26 +229,26 @@ func TestNetworkDBCRUDTableEntry(t *testing.T) {
dbs := createNetworkDBInstances(t, 3, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyNetworkExistence(t, dbs[0].config.NodeID, "network1", true)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[0].CreateEntry("test_table", "network1", "test_key", []byte("test_value"))
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_value", true)
dbs[2].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_value", false)
err = dbs[0].UpdateEntry("test_table", "network1", "test_key", []byte("test_updated_value"))
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_updated_value", true)
err = dbs[0].DeleteEntry("test_table", "network1", "test_key")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyEntryExistence(t, "test_table", "network1", "test_key", "", false)
@ -259,65 +259,65 @@ func TestNetworkDBCRUDTableEntries(t *testing.T) {
dbs := createNetworkDBInstances(t, 2, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyNetworkExistence(t, dbs[0].config.NodeID, "network1", true)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
n := 10
for i := 1; i <= n; i++ {
err = dbs[0].CreateEntry("test_table", "network1",
fmt.Sprintf("test_key0%d", i),
[]byte(fmt.Sprintf("test_value0%d", i)))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
err = dbs[1].CreateEntry("test_table", "network1",
fmt.Sprintf("test_key1%d", i),
[]byte(fmt.Sprintf("test_value1%d", i)))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
dbs[0].verifyEntryExistence(t, "test_table", "network1",
fmt.Sprintf("test_key1%d", i),
fmt.Sprintf("test_value1%d", i), true)
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
dbs[1].verifyEntryExistence(t, "test_table", "network1",
fmt.Sprintf("test_key0%d", i),
fmt.Sprintf("test_value0%d", i), true)
assert.NoError(t, err)
assert.NilError(t, err)
}
// Verify deletes
for i := 1; i <= n; i++ {
err = dbs[0].DeleteEntry("test_table", "network1",
fmt.Sprintf("test_key0%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
err = dbs[1].DeleteEntry("test_table", "network1",
fmt.Sprintf("test_key1%d", i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
dbs[0].verifyEntryExistence(t, "test_table", "network1",
fmt.Sprintf("test_key1%d", i), "", false)
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 1; i <= n; i++ {
dbs[1].verifyEntryExistence(t, "test_table", "network1",
fmt.Sprintf("test_key0%d", i), "", false)
assert.NoError(t, err)
assert.NilError(t, err)
}
closeNetworkDBInstances(dbs)
@ -327,13 +327,13 @@ func TestNetworkDBNodeLeave(t *testing.T) {
dbs := createNetworkDBInstances(t, 2, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[0].CreateEntry("test_table", "network1", "test_key", []byte("test_value"))
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_value", true)
@ -345,25 +345,25 @@ func TestNetworkDBNodeLeave(t *testing.T) {
func TestNetworkDBWatch(t *testing.T) {
dbs := createNetworkDBInstances(t, 2, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
ch, cancel := dbs[1].Watch("", "", "")
err = dbs[0].CreateEntry("test_table", "network1", "test_key", []byte("test_value"))
assert.NoError(t, err)
assert.NilError(t, err)
testWatch(t, ch.C, CreateEvent{}, "test_table", "network1", "test_key", "test_value")
err = dbs[0].UpdateEntry("test_table", "network1", "test_key", []byte("test_updated_value"))
assert.NoError(t, err)
assert.NilError(t, err)
testWatch(t, ch.C, UpdateEvent{}, "test_table", "network1", "test_key", "test_updated_value")
err = dbs[0].DeleteEntry("test_table", "network1", "test_key")
assert.NoError(t, err)
assert.NilError(t, err)
testWatch(t, ch.C, DeleteEvent{}, "test_table", "network1", "test_key", "")
@ -375,7 +375,7 @@ func TestNetworkDBBulkSync(t *testing.T) {
dbs := createNetworkDBInstances(t, 2, "node", DefaultConfig())
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[1].verifyNetworkExistence(t, dbs[0].config.NodeID, "network1", true)
@ -384,11 +384,11 @@ func TestNetworkDBBulkSync(t *testing.T) {
err = dbs[0].CreateEntry("test_table", "network1",
fmt.Sprintf("test_key0%d", i),
[]byte(fmt.Sprintf("test_value0%d", i)))
assert.NoError(t, err)
assert.NilError(t, err)
}
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
dbs[0].verifyNetworkExistence(t, dbs[1].config.NodeID, "network1", true)
@ -396,7 +396,7 @@ func TestNetworkDBBulkSync(t *testing.T) {
dbs[1].verifyEntryExistence(t, "test_table", "network1",
fmt.Sprintf("test_key0%d", i),
fmt.Sprintf("test_value0%d", i), true)
assert.NoError(t, err)
assert.NilError(t, err)
}
closeNetworkDBInstances(dbs)
@ -419,7 +419,7 @@ func TestNetworkDBCRUDMediumCluster(t *testing.T) {
for i := 0; i < n; i++ {
err := dbs[i].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 0; i < n; i++ {
@ -429,21 +429,21 @@ func TestNetworkDBCRUDMediumCluster(t *testing.T) {
}
err := dbs[0].CreateEntry("test_table", "network1", "test_key", []byte("test_value"))
assert.NoError(t, err)
assert.NilError(t, err)
for i := 1; i < n; i++ {
dbs[i].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_value", true)
}
err = dbs[0].UpdateEntry("test_table", "network1", "test_key", []byte("test_updated_value"))
assert.NoError(t, err)
assert.NilError(t, err)
for i := 1; i < n; i++ {
dbs[i].verifyEntryExistence(t, "test_table", "network1", "test_key", "test_updated_value", true)
}
err = dbs[0].DeleteEntry("test_table", "network1", "test_key")
assert.NoError(t, err)
assert.NilError(t, err)
for i := 1; i < n; i++ {
dbs[i].verifyEntryExistence(t, "test_table", "network1", "test_key", "", false)
@ -451,8 +451,8 @@ func TestNetworkDBCRUDMediumCluster(t *testing.T) {
for i := 1; i < n; i++ {
_, err = dbs[i].GetEntry("test_table", "network1", "test_key")
assert.Error(t, err)
assert.True(t, strings.Contains(err.Error(), "deleted and pending garbage collection"))
assert.Check(t, is.ErrorContains(err, ""))
assert.Check(t, strings.Contains(err.Error(), "deleted and pending garbage collection"))
}
closeNetworkDBInstances(dbs)
@ -464,14 +464,14 @@ func TestNetworkDBNodeJoinLeaveIteration(t *testing.T) {
// Single node Join/Leave
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
if len(dbs[0].networkNodes["network1"]) != 1 {
t.Fatalf("The networkNodes list has to have be 1 instead of %d", len(dbs[0].networkNodes["network1"]))
}
err = dbs[0].LeaveNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
if len(dbs[0].networkNodes["network1"]) != 0 {
t.Fatalf("The networkNodes list has to have be 0 instead of %d", len(dbs[0].networkNodes["network1"]))
@ -479,10 +479,10 @@ func TestNetworkDBNodeJoinLeaveIteration(t *testing.T) {
// Multiple nodes Join/Leave
err = dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
// Wait for the propagation on db[0]
for i := 0; i < maxRetry; i++ {
@ -514,9 +514,9 @@ func TestNetworkDBNodeJoinLeaveIteration(t *testing.T) {
// Try a quick leave/join
err = dbs[0].LeaveNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
for i := 0; i < maxRetry; i++ {
if len(dbs[0].networkNodes["network1"]) == 2 {
@ -551,42 +551,42 @@ func TestNetworkDBGarbageCollection(t *testing.T) {
// 2 Nodes join network
err := dbs[0].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
err = dbs[1].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
for i := 0; i < keysWriteDelete; i++ {
err = dbs[i%2].CreateEntry("testTable", "network1", "key-"+string(i), []byte("value"))
assert.NoError(t, err)
assert.NilError(t, err)
}
time.Sleep(time.Second)
for i := 0; i < keysWriteDelete; i++ {
err = dbs[i%2].DeleteEntry("testTable", "network1", "key-"+string(i))
assert.NoError(t, err)
assert.NilError(t, err)
}
for i := 0; i < 2; i++ {
assert.Equal(t, keysWriteDelete, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber, "entries number should match")
assert.Check(t, is.Equal(keysWriteDelete, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber), "entries number should match")
}
// from this point the timer for the garbage collection started, wait 5 seconds and then join a new node
time.Sleep(5 * time.Second)
err = dbs[2].JoinNetwork("network1")
assert.NoError(t, err)
assert.NilError(t, err)
for i := 0; i < 3; i++ {
assert.Equal(t, keysWriteDelete, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber, "entries number should match")
assert.Check(t, is.Equal(keysWriteDelete, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber), "entries number should match")
}
// at this point the entries should had been all deleted
time.Sleep(30 * time.Second)
for i := 0; i < 3; i++ {
assert.Equal(t, 0, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber, "entries should had been garbage collected")
assert.Check(t, is.Equal(0, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber), "entries should had been garbage collected")
}
// make sure that entries are not coming back
time.Sleep(15 * time.Second)
for i := 0; i < 3; i++ {
assert.Equal(t, 0, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber, "entries should had been garbage collected")
assert.Check(t, is.Equal(0, dbs[i].networks[dbs[i].config.NodeID]["network1"].entriesNumber), "entries should had been garbage collected")
}
closeNetworkDBInstances(dbs)
@ -600,42 +600,42 @@ func TestFindNode(t *testing.T) {
dbs[0].leftNodes["left"] = &node{Node: memberlist.Node{Name: "left"}}
// active nodes is 2 because the testing node is in the list
assert.Equal(t, 2, len(dbs[0].nodes))
assert.Equal(t, 1, len(dbs[0].failedNodes))
assert.Equal(t, 1, len(dbs[0].leftNodes))
assert.Check(t, is.Len(dbs[0].nodes, 2))
assert.Check(t, is.Len(dbs[0].failedNodes, 1))
assert.Check(t, is.Len(dbs[0].leftNodes, 1))
n, currState, m := dbs[0].findNode("active")
assert.NotNil(t, n)
assert.Equal(t, "active", n.Name)
assert.Equal(t, nodeActiveState, currState)
assert.NotNil(t, m)
assert.Check(t, n != nil)
assert.Check(t, is.Equal("active", n.Name))
assert.Check(t, is.Equal(nodeActiveState, currState))
assert.Check(t, m != nil)
// delete the entry manually
delete(m, "active")
// test if can be still find
n, currState, m = dbs[0].findNode("active")
assert.Nil(t, n)
assert.Equal(t, nodeNotFound, currState)
assert.Nil(t, m)
assert.Check(t, is.Nil(n))
assert.Check(t, is.Equal(nodeNotFound, currState))
assert.Check(t, is.Nil(m))
n, currState, m = dbs[0].findNode("failed")
assert.NotNil(t, n)
assert.Equal(t, "failed", n.Name)
assert.Equal(t, nodeFailedState, currState)
assert.NotNil(t, m)
assert.Check(t, n != nil)
assert.Check(t, is.Equal("failed", n.Name))
assert.Check(t, is.Equal(nodeFailedState, currState))
assert.Check(t, m != nil)
// find and remove
n, currState, m = dbs[0].findNode("left")
assert.NotNil(t, n)
assert.Equal(t, "left", n.Name)
assert.Equal(t, nodeLeftState, currState)
assert.NotNil(t, m)
assert.Check(t, n != nil)
assert.Check(t, is.Equal("left", n.Name))
assert.Check(t, is.Equal(nodeLeftState, currState))
assert.Check(t, m != nil)
delete(m, "left")
n, currState, m = dbs[0].findNode("left")
assert.Nil(t, n)
assert.Equal(t, nodeNotFound, currState)
assert.Nil(t, m)
assert.Check(t, is.Nil(n))
assert.Check(t, is.Equal(nodeNotFound, currState))
assert.Check(t, is.Nil(m))
closeNetworkDBInstances(dbs)
}
@ -648,33 +648,33 @@ func TestChangeNodeState(t *testing.T) {
dbs[0].nodes["node3"] = &node{Node: memberlist.Node{Name: "node3"}}
// active nodes is 4 because the testing node is in the list
assert.Equal(t, 4, len(dbs[0].nodes))
assert.Check(t, is.Len(dbs[0].nodes, 4))
n, currState, m := dbs[0].findNode("node1")
assert.NotNil(t, n)
assert.Equal(t, nodeActiveState, currState)
assert.Equal(t, "node1", n.Name)
assert.NotNil(t, m)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeActiveState, currState))
assert.Check(t, is.Equal("node1", n.Name))
assert.Check(t, m != nil)
// node1 to failed
dbs[0].changeNodeState("node1", nodeFailedState)
n, currState, m = dbs[0].findNode("node1")
assert.NotNil(t, n)
assert.Equal(t, nodeFailedState, currState)
assert.Equal(t, "node1", n.Name)
assert.NotNil(t, m)
assert.NotEqual(t, time.Duration(0), n.reapTime)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeFailedState, currState))
assert.Check(t, is.Equal("node1", n.Name))
assert.Check(t, m != nil)
assert.Check(t, time.Duration(0) != n.reapTime)
// node1 back to active
dbs[0].changeNodeState("node1", nodeActiveState)
n, currState, m = dbs[0].findNode("node1")
assert.NotNil(t, n)
assert.Equal(t, nodeActiveState, currState)
assert.Equal(t, "node1", n.Name)
assert.NotNil(t, m)
assert.Equal(t, time.Duration(0), n.reapTime)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeActiveState, currState))
assert.Check(t, is.Equal("node1", n.Name))
assert.Check(t, m != nil)
assert.Check(t, is.Equal(time.Duration(0), n.reapTime))
// node1 to left
dbs[0].changeNodeState("node1", nodeLeftState)
@ -682,30 +682,30 @@ func TestChangeNodeState(t *testing.T) {
dbs[0].changeNodeState("node3", nodeLeftState)
n, currState, m = dbs[0].findNode("node1")
assert.NotNil(t, n)
assert.Equal(t, nodeLeftState, currState)
assert.Equal(t, "node1", n.Name)
assert.NotNil(t, m)
assert.NotEqual(t, time.Duration(0), n.reapTime)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeLeftState, currState))
assert.Check(t, is.Equal("node1", n.Name))
assert.Check(t, m != nil)
assert.Check(t, time.Duration(0) != n.reapTime)
n, currState, m = dbs[0].findNode("node2")
assert.NotNil(t, n)
assert.Equal(t, nodeLeftState, currState)
assert.Equal(t, "node2", n.Name)
assert.NotNil(t, m)
assert.NotEqual(t, time.Duration(0), n.reapTime)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeLeftState, currState))
assert.Check(t, is.Equal("node2", n.Name))
assert.Check(t, m != nil)
assert.Check(t, time.Duration(0) != n.reapTime)
n, currState, m = dbs[0].findNode("node3")
assert.NotNil(t, n)
assert.Equal(t, nodeLeftState, currState)
assert.Equal(t, "node3", n.Name)
assert.NotNil(t, m)
assert.NotEqual(t, time.Duration(0), n.reapTime)
assert.Check(t, n != nil)
assert.Check(t, is.Equal(nodeLeftState, currState))
assert.Check(t, is.Equal("node3", n.Name))
assert.Check(t, m != nil)
assert.Check(t, time.Duration(0) != n.reapTime)
// active nodes is 1 because the testing node is in the list
assert.Equal(t, 1, len(dbs[0].nodes))
assert.Equal(t, 0, len(dbs[0].failedNodes))
assert.Equal(t, 3, len(dbs[0].leftNodes))
assert.Check(t, is.Len(dbs[0].nodes, 1))
assert.Check(t, is.Len(dbs[0].failedNodes, 0))
assert.Check(t, is.Len(dbs[0].leftNodes, 3))
closeNetworkDBInstances(dbs)
}
@ -718,29 +718,29 @@ func TestNodeReincarnation(t *testing.T) {
dbs[0].failedNodes["node3"] = &node{Node: memberlist.Node{Name: "node3", Addr: net.ParseIP("192.168.1.3")}}
// active nodes is 2 because the testing node is in the list
assert.Equal(t, 2, len(dbs[0].nodes))
assert.Equal(t, 1, len(dbs[0].failedNodes))
assert.Equal(t, 1, len(dbs[0].leftNodes))
assert.Check(t, is.Len(dbs[0].nodes, 2))
assert.Check(t, is.Len(dbs[0].failedNodes, 1))
assert.Check(t, is.Len(dbs[0].leftNodes, 1))
b := dbs[0].purgeReincarnation(&memberlist.Node{Name: "node4", Addr: net.ParseIP("192.168.1.1")})
assert.True(t, b)
assert.Check(t, b)
dbs[0].nodes["node4"] = &node{Node: memberlist.Node{Name: "node4", Addr: net.ParseIP("192.168.1.1")}}
b = dbs[0].purgeReincarnation(&memberlist.Node{Name: "node5", Addr: net.ParseIP("192.168.1.2")})
assert.True(t, b)
assert.Check(t, b)
dbs[0].nodes["node5"] = &node{Node: memberlist.Node{Name: "node5", Addr: net.ParseIP("192.168.1.1")}}
b = dbs[0].purgeReincarnation(&memberlist.Node{Name: "node6", Addr: net.ParseIP("192.168.1.3")})
assert.True(t, b)
assert.Check(t, b)
dbs[0].nodes["node6"] = &node{Node: memberlist.Node{Name: "node6", Addr: net.ParseIP("192.168.1.1")}}
b = dbs[0].purgeReincarnation(&memberlist.Node{Name: "node6", Addr: net.ParseIP("192.168.1.10")})
assert.False(t, b)
assert.Check(t, !b)
// active nodes is 1 because the testing node is in the list
assert.Equal(t, 4, len(dbs[0].nodes))
assert.Equal(t, 0, len(dbs[0].failedNodes))
assert.Equal(t, 3, len(dbs[0].leftNodes))
assert.Check(t, is.Len(dbs[0].nodes, 4))
assert.Check(t, is.Len(dbs[0].failedNodes, 0))
assert.Check(t, is.Len(dbs[0].leftNodes, 3))
closeNetworkDBInstances(dbs)
}
@ -769,7 +769,7 @@ func TestParallelCreate(t *testing.T) {
}
close(doneCh)
// Only 1 write should have succeeded
assert.Equal(t, int32(1), success)
assert.Check(t, is.Equal(int32(1), success))
closeNetworkDBInstances(dbs)
}
@ -778,7 +778,7 @@ func TestParallelDelete(t *testing.T) {
dbs := createNetworkDBInstances(t, 1, "node", DefaultConfig())
err := dbs[0].CreateEntry("testTable", "testNetwork", "key", []byte("value"))
assert.NoError(t, err)
assert.NilError(t, err)
startCh := make(chan int)
doneCh := make(chan error)
@ -801,7 +801,7 @@ func TestParallelDelete(t *testing.T) {
}
close(doneCh)
// Only 1 write should have succeeded
assert.Equal(t, int32(1), success)
assert.Check(t, is.Equal(int32(1), success))
closeNetworkDBInstances(dbs)
}
@ -819,7 +819,7 @@ func TestNetworkDBIslands(t *testing.T) {
fmt.Sprintf("%s:%d", baseIPStr, dbs[2].config.BindPort)}
// Rejoining will update the list of the bootstrap members
for i := 3; i < 5; i++ {
assert.NoError(t, dbs[i].Join(members))
assert.Check(t, dbs[i].Join(members))
}
// Now the 3 bootstrap nodes will cleanly leave, and will be properly removed from the other 2 nodes
@ -834,8 +834,8 @@ func TestNetworkDBIslands(t *testing.T) {
// Verify that the nodes are actually all gone and marked appropiately
for i := 3; i < 5; i++ {
assert.Len(t, dbs[i].leftNodes, 3)
assert.Len(t, dbs[i].failedNodes, 0)
assert.Check(t, is.Len(dbs[i].leftNodes, 3))
assert.Check(t, is.Len(dbs[i].failedNodes, 0))
}
// Spawn again the first 3 nodes with different names but same IP:port
@ -851,14 +851,14 @@ func TestNetworkDBIslands(t *testing.T) {
// Verify that the cluster is again all connected. Note that the 3 previous node did not do any join
for i := 0; i < 5; i++ {
assert.Len(t, dbs[i].nodes, 5)
assert.Len(t, dbs[i].failedNodes, 0)
assert.Check(t, is.Len(dbs[i].nodes, 5))
assert.Check(t, is.Len(dbs[i].failedNodes, 0))
if i < 3 {
// nodes from 0 to 3 has no left nodes
assert.Len(t, dbs[i].leftNodes, 0)
assert.Check(t, is.Len(dbs[i].leftNodes, 0))
} else {
// nodes from 4 to 5 has the 3 previous left nodes
assert.Len(t, dbs[i].leftNodes, 3)
assert.Check(t, is.Len(dbs[i].leftNodes, 3))
}
}
}

View file

@ -4,7 +4,8 @@ import (
"testing"
"github.com/sirupsen/logrus"
"github.com/stretchr/testify/assert"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
_ "github.com/docker/libnetwork/testutils"
)
@ -23,11 +24,11 @@ func TestReadWriteKnobs(t *testing.T) {
continue
}
// Test the write
assert.NoError(t, writeSystemProperty(k, "10000"))
assert.Check(t, writeSystemProperty(k, "10000"))
newV, err := readSystemProperty(k)
assert.NoError(t, err)
assert.Equal(t, newV, "10000")
assert.NilError(t, err)
assert.Check(t, is.Equal(newV, "10000"))
// Restore value
assert.NoError(t, writeSystemProperty(k, v))
assert.Check(t, writeSystemProperty(k, v))
}
}

View file

@ -5,21 +5,21 @@ import (
"testing"
"github.com/docker/libnetwork/resolvconf"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
func TestCleanupServiceDiscovery(t *testing.T) {
c, err := New()
require.NoError(t, err)
assert.NilError(t, err)
defer c.Stop()
n1, err := c.NewNetwork("bridge", "net1", "", nil)
require.NoError(t, err)
assert.NilError(t, err)
defer n1.Delete()
n2, err := c.NewNetwork("bridge", "net2", "", nil)
require.NoError(t, err)
assert.NilError(t, err)
defer n2.Delete()
n1.(*network).addSvcRecords("N1ep1", "service_test", "serviceID1", net.ParseIP("192.168.0.1"), net.IP{}, true, "test")
@ -48,65 +48,65 @@ func TestCleanupServiceDiscovery(t *testing.T) {
func TestDNSOptions(t *testing.T) {
c, err := New()
require.NoError(t, err)
assert.NilError(t, err)
sb, err := c.(*controller).NewSandbox("cnt1", nil)
require.NoError(t, err)
assert.NilError(t, err)
defer sb.Delete()
sb.(*sandbox).startResolver(false)
err = sb.(*sandbox).setupDNS()
require.NoError(t, err)
assert.NilError(t, err)
err = sb.(*sandbox).rebuildDNS()
require.NoError(t, err)
assert.NilError(t, err)
currRC, err := resolvconf.GetSpecific(sb.(*sandbox).config.resolvConfPath)
require.NoError(t, err)
assert.NilError(t, err)
dnsOptionsList := resolvconf.GetOptions(currRC.Content)
assert.Equal(t, 1, len(dnsOptionsList))
assert.Equal(t, "ndots:0", dnsOptionsList[0])
assert.Check(t, is.Len(dnsOptionsList, 1))
assert.Check(t, is.Equal("ndots:0", dnsOptionsList[0]))
sb.(*sandbox).config.dnsOptionsList = []string{"ndots:5"}
err = sb.(*sandbox).setupDNS()
require.NoError(t, err)
assert.NilError(t, err)
currRC, err = resolvconf.GetSpecific(sb.(*sandbox).config.resolvConfPath)
require.NoError(t, err)
assert.NilError(t, err)
dnsOptionsList = resolvconf.GetOptions(currRC.Content)
assert.Equal(t, 1, len(dnsOptionsList))
assert.Equal(t, "ndots:5", dnsOptionsList[0])
assert.Check(t, is.Len(dnsOptionsList, 1))
assert.Check(t, is.Equal("ndots:5", dnsOptionsList[0]))
err = sb.(*sandbox).rebuildDNS()
require.NoError(t, err)
assert.NilError(t, err)
currRC, err = resolvconf.GetSpecific(sb.(*sandbox).config.resolvConfPath)
require.NoError(t, err)
assert.NilError(t, err)
dnsOptionsList = resolvconf.GetOptions(currRC.Content)
assert.Equal(t, 1, len(dnsOptionsList))
assert.Equal(t, "ndots:5", dnsOptionsList[0])
assert.Check(t, is.Len(dnsOptionsList, 1))
assert.Check(t, is.Equal("ndots:5", dnsOptionsList[0]))
sb2, err := c.(*controller).NewSandbox("cnt2", nil)
require.NoError(t, err)
assert.NilError(t, err)
defer sb2.Delete()
sb2.(*sandbox).startResolver(false)
sb2.(*sandbox).config.dnsOptionsList = []string{"ndots:0"}
err = sb2.(*sandbox).setupDNS()
require.NoError(t, err)
assert.NilError(t, err)
err = sb2.(*sandbox).rebuildDNS()
require.NoError(t, err)
assert.NilError(t, err)
currRC, err = resolvconf.GetSpecific(sb2.(*sandbox).config.resolvConfPath)
require.NoError(t, err)
assert.NilError(t, err)
dnsOptionsList = resolvconf.GetOptions(currRC.Content)
assert.Equal(t, 1, len(dnsOptionsList))
assert.Equal(t, "ndots:0", dnsOptionsList[0])
assert.Check(t, is.Len(dnsOptionsList, 1))
assert.Check(t, is.Equal("ndots:0", dnsOptionsList[0]))
sb2.(*sandbox).config.dnsOptionsList = []string{"ndots:foobar"}
err = sb2.(*sandbox).setupDNS()
require.NoError(t, err)
assert.NilError(t, err)
err = sb2.(*sandbox).rebuildDNS()
require.EqualError(t, err, "invalid number for ndots option: foobar")
assert.Error(t, err, "invalid number for ndots option: foobar")
sb2.(*sandbox).config.dnsOptionsList = []string{"ndots:-1"}
err = sb2.(*sandbox).setupDNS()
require.NoError(t, err)
assert.NilError(t, err)
err = sb2.(*sandbox).rebuildDNS()
require.EqualError(t, err, "invalid number for ndots option: -1")
assert.Error(t, err, "invalid number for ndots option: -1")
}

View file

@ -4,9 +4,9 @@ import (
"net"
"testing"
"github.com/stretchr/testify/require"
_ "github.com/docker/libnetwork/testutils"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
func TestTransportPortConv(t *testing.T) {
@ -76,10 +76,10 @@ func TestTransportPortBindingConv(t *testing.T) {
rc := new(PortBinding)
err := rc.FromString(in.sform)
if in.shouldFail {
require.Error(t, err, "Unexpected success parsing %s", in.sform)
assert.Assert(t, is.ErrorContains(err, ""), "Unexpected success parsing %s", in.sform)
} else {
require.NoError(t, err)
require.Equal(t, in.pb, *rc, "input %s: expected %#v, got %#v", in.sform, in.pb, rc)
assert.NilError(t, err)
assert.Assert(t, is.DeepEqual(in.pb, *rc), "input %s: expected %#v, got %#v", in.sform, in.pb, rc)
}
}
}

View file

@ -6,12 +6,9 @@ github.com/armon/go-metrics eb0af217e5e9747e41dd5303755356b62d28e3ec
github.com/armon/go-radix e39d623f12e8e41c7b5529e9a9dd67a1e2261f80
github.com/boltdb/bolt fff57c100f4dea1905678da7e90d92429dff2904
github.com/codegangsta/cli a65b733b303f0055f8d324d805f393cd3e7a7904
github.com/containerd/console cb7008ab3d8359b78c5f464cb7cf160107ad5925
github.com/containerd/continuity d3c23511c1bf5851696cba83143d9cbcd666869b
github.com/coreos/etcd v3.2.1
github.com/coreos/go-semver v0.2.0
github.com/coreos/go-systemd v17
github.com/coreos/pkg fa29b1d70f0beaddd4c7021607cc3c3be8ce94b8
github.com/deckarep/golang-set ef32fa3046d9f249d399f98ebaf9be944430fd1d
github.com/docker/docker 162ba6016def672690ee4a1f3978368853a1e149
@ -22,7 +19,6 @@ github.com/docker/libkv 1d8431073ae03cdaedb198a89722f3aab6d418ef
github.com/godbus/dbus v4.0.0
github.com/gogo/protobuf v1.0.0
github.com/golang/protobuf v1.1.0
github.com/gorilla/context v1.1
github.com/gorilla/mux v1.1
github.com/hashicorp/consul v0.5.2
@ -34,16 +30,12 @@ github.com/hashicorp/go-sockaddr 6d291a969b86c4b633730bfc6b8b9d64c3aafed9
github.com/hashicorp/serf 598c54895cc5a7b1a24a398d635e8c0ea0959870
github.com/mattn/go-shellwords v1.0.3
github.com/miekg/dns v1.0.7
github.com/mrunalp/fileutils ed869b029674c0e9ce4c0dfa781405c2d9946d08
github.com/opencontainers/go-digest v1.0.0-rc1
github.com/opencontainers/image-spec v1.0.1
github.com/opencontainers/runc 69663f0bd4b60df09991c08812a60108003fa340
github.com/opencontainers/runtime-spec v1.0.1
github.com/opencontainers/selinux b29023b86e4a69d1b46b7e7b4e2b6fda03f0b9cd
github.com/samuel/go-zookeeper d0e0d8e11f318e000a8cc434616d69e329edc374
github.com/seccomp/libseccomp-golang 32f571b70023028bd57d9288c20efbcb237f3ce0
github.com/sirupsen/logrus v1.0.3
github.com/stretchr/testify v1.2.2
github.com/syndtr/gocapability 33e07d32887e1e06b7c025f27ce52f62c7990bc0
github.com/ugorji/go f1f1a805ed361a0e078bb537e4ea78cd37dcf065
github.com/vishvananda/netlink b2de5d10e38ecce8607e6b438b6d174f389a004e
@ -55,12 +47,5 @@ golang.org/x/sync fd80eb99c8f653c847d294a001bdf2a3a6f768f5
github.com/pkg/errors 839d9e913e063e28dfd0e6c7b7512793e0a48be9
github.com/ishidawataru/sctp 07191f837fedd2f13d1ec7b5f885f0f3ec54b1cb
github.com/davecgh/go-spew v1.1.0
github.com/pmezard/go-difflib v1.0.0
github.com/cyphar/filepath-securejoin v0.2.1
github.com/hashicorp/errwrap 7554cd9344cec97297fa6649b055a8c98c2a1e55
github.com/hashicorp/go-immutable-radix 7f3cd4390caab3250a57f30efdb2a65dd7649ecf
github.com/hashicorp/golang-lru 0fb14efe8c47ae851c0034ed7a448854d3d34cf3
github.com/hashicorp/go-cleanhttp d5fe4b57a186c716b0e00b8c301cbd9b4182694d
github.com/hashicorp/go-rootcerts 6bb64b370b90e7ef1fa532be9e591a81c3493e00
github.com/mitchellh/go-homedir 3864e76763d94a6df2f9960b16a20a33da9f9a66
gotest.tools v2.1.0
github.com/google/go-cmp v0.2.0

View file

@ -1,15 +0,0 @@
ISC License
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View file

@ -1,205 +0,0 @@
go-spew
=======
[![Build Status](https://img.shields.io/travis/davecgh/go-spew.svg)]
(https://travis-ci.org/davecgh/go-spew) [![ISC License]
(http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org) [![Coverage Status]
(https://img.shields.io/coveralls/davecgh/go-spew.svg)]
(https://coveralls.io/r/davecgh/go-spew?branch=master)
Go-spew implements a deep pretty printer for Go data structures to aid in
debugging. A comprehensive suite of tests with 100% test coverage is provided
to ensure proper functionality. See `test_coverage.txt` for the gocov coverage
report. Go-spew is licensed under the liberal ISC license, so it may be used in
open source or commercial projects.
If you're interested in reading about how this package came to life and some
of the challenges involved in providing a deep pretty printer, there is a blog
post about it
[here](https://web.archive.org/web/20160304013555/https://blog.cyphertite.com/go-spew-a-journey-into-dumping-go-data-structures/).
## Documentation
[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)]
(http://godoc.org/github.com/davecgh/go-spew/spew)
Full `go doc` style documentation for the project can be viewed online without
installing this package by using the excellent GoDoc site here:
http://godoc.org/github.com/davecgh/go-spew/spew
You can also view the documentation locally once the package is installed with
the `godoc` tool by running `godoc -http=":6060"` and pointing your browser to
http://localhost:6060/pkg/github.com/davecgh/go-spew/spew
## Installation
```bash
$ go get -u github.com/davecgh/go-spew/spew
```
## Quick Start
Add this import line to the file you're working in:
```Go
import "github.com/davecgh/go-spew/spew"
```
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
```Go
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
```
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with %v (most
compact), %+v (adds pointer addresses), %#v (adds types), or %#+v (adds types
and pointer addresses):
```Go
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
```
## Debugging a Web Application Example
Here is an example of how you can use `spew.Sdump()` to help debug a web application. Please be sure to wrap your output using the `html.EscapeString()` function for safety reasons. You should also only use this debugging technique in a development environment, never in production.
```Go
package main
import (
"fmt"
"html"
"net/http"
"github.com/davecgh/go-spew/spew"
)
func handler(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "text/html")
fmt.Fprintf(w, "Hi there, %s!", r.URL.Path[1:])
fmt.Fprintf(w, "<!--\n" + html.EscapeString(spew.Sdump(w)) + "\n-->")
}
func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":8080", nil)
}
```
## Sample Dump Output
```
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) {
(string) "one": (bool) true
}
}
([]uint8) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
```
## Sample Formatter Output
Double pointer to a uint8:
```
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
```
Pointer to circular struct with a uint8 field and a pointer to itself:
```
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
```
## Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available via the
spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
```
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables. This option
relies on access to the unsafe package, so it will not have any effect when
running in environments without access to the unsafe package such as Google
App Engine or with the "safe" build tag specified.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of capacities
for arrays, slices, maps and channels. This is useful when diffing data
structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are supported,
with other types sorted according to the reflect.Value.String() output
which guarantees display stability. Natural map order is used by
default.
* SpewKeys
SpewKeys specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only considered
if SortKeys is true.
```
## Unsafe Package Dependency
This package relies on the unsafe package to perform some of the more advanced
features, however it also supports a "limited" mode which allows it to work in
environments where the unsafe package is not available. By default, it will
operate in this mode on Google App Engine and when compiled with GopherJS. The
"safe" build tag may also be specified to force the package to build without
using the unsafe package.
## License
Go-spew is licensed under the [copyfree](http://copyfree.org) ISC License.

View file

@ -1,152 +0,0 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine, compiled by GopherJS, and
// "-tags safe" is not added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build !js,!appengine,!safe,!disableunsafe
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = uintptr(ptrSize)
offsetScalar = uintptr(0)
offsetFlag = uintptr(ptrSize * 2)
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = uintptr(flagKindWidth - 1)
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
// Commit adf9b30e5594 modified the flags to separate the
// flagRO flag into two bits which specifies whether or not the
// field is embedded. This causes flagIndir to move over a bit
// and means that flagRO is the combination of either of the
// original flagRO bit and the new bit.
//
// This code detects the change by extracting what used to be
// the indirect bit to ensure it's set. When it's not, the flag
// order has been changed to the newer format, so the flags are
// updated accordingly.
if upfv&flagIndir == 0 {
flagRO = 3 << 5
flagIndir = 1 << 7
}
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}

View file

@ -1,38 +0,0 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is running on Google App Engine, compiled by GopherJS, or
// "-tags safe" is added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build js appengine safe disableunsafe
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

View file

@ -1,341 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

View file

@ -1,306 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "safe" build tag specified.
DisablePointerMethods bool
// DisablePointerAddresses specifies whether to disable the printing of
// pointer addresses. This is useful when diffing data structures in tests.
DisablePointerAddresses bool
// DisableCapacities specifies whether to disable the printing of capacities
// for arrays, slices, maps and channels. This is useful when diffing
// data structures in tests.
DisableCapacities bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

View file

@ -1,211 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of
capacities for arrays, slices, maps and channels. This is useful when
diffing data structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

View file

@ -1,509 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound == true:
d.w.Write(nilAngleBytes)
case cycleFound == true:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if !d.cs.DisableCapacities && valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

View file

@ -1,419 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound == true:
f.fs.Write(nilAngleBytes)
case cycleFound == true:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

View file

@ -1,148 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

27
libnetwork/vendor/github.com/google/go-cmp/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2017 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

44
libnetwork/vendor/github.com/google/go-cmp/README.md generated vendored Normal file
View file

@ -0,0 +1,44 @@
# Package for equality of Go values
[![GoDoc](https://godoc.org/github.com/google/go-cmp/cmp?status.svg)][godoc]
[![Build Status](https://travis-ci.org/google/go-cmp.svg?branch=master)][travis]
This package is intended to be a more powerful and safer alternative to
`reflect.DeepEqual` for comparing whether two values are semantically equal.
The primary features of `cmp` are:
* When the default behavior of equality does not suit the needs of the test,
custom equality functions can override the equality operation.
For example, an equality function may report floats as equal so long as they
are within some tolerance of each other.
* Types that have an `Equal` method may use that method to determine equality.
This allows package authors to determine the equality operation for the types
that they define.
* If no custom equality functions are used and no `Equal` method is defined,
equality is determined by recursively comparing the primitive kinds on both
values, much like `reflect.DeepEqual`. Unlike `reflect.DeepEqual`, unexported
fields are not compared by default; they result in panics unless suppressed
by using an `Ignore` option (see `cmpopts.IgnoreUnexported`) or explicitly
compared using the `AllowUnexported` option.
See the [GoDoc documentation][godoc] for more information.
This is not an official Google product.
[godoc]: https://godoc.org/github.com/google/go-cmp/cmp
[travis]: https://travis-ci.org/google/go-cmp
## Install
```
go get -u github.com/google/go-cmp/cmp
```
## License
BSD - See [LICENSE][license] file
[license]: https://github.com/google/go-cmp/blob/master/LICENSE

View file

@ -0,0 +1,553 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
//
// The primary features of cmp are:
//
// • When the default behavior of equality does not suit the needs of the test,
// custom equality functions can override the equality operation.
// For example, an equality function may report floats as equal so long as they
// are within some tolerance of each other.
//
// • Types that have an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation for the types
// that they define.
//
// • If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared
// using the AllowUnexported option.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value"
)
// BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to
// the reflection package's inability to retrieve such entries. Equal will panic
// anytime it comes across a NaN key, but this behavior may change.
//
// See https://golang.org/issue/11104 for more details.
var nothing = reflect.Value{}
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • If two values are not of the same type, then they are never equal
// and the overall result is false.
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is greater than one,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform the current
// values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil.
// Otherwise, no such method exists and evaluation proceeds to the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
// Pointers are equal if the underlying values they point to are also equal.
// Interfaces are equal if their underlying concrete values are also equal.
//
// Structs are equal if all of their fields are equal. If a struct contains
// unexported fields, Equal panics unless the AllowUnexported option is used or
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
//
// Arrays, slices, and maps are equal if they are both nil or both non-nil
// with the same length and the elements at each index or key are equal.
// Note that a non-nil empty slice and a nil slice are not equal.
// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
func Equal(x, y interface{}, opts ...Option) bool {
s := newState(opts)
s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
return s.result.Equal()
}
// Diff returns a human-readable report of the differences between two values.
// It returns an empty string if and only if Equal returns true for the same
// input values and options. The output string will use the "-" symbol to
// indicate elements removed from x, and the "+" symbol to indicate elements
// added to y.
//
// Do not depend on this output being stable.
func Diff(x, y interface{}, opts ...Option) string {
r := new(defaultReporter)
opts = Options{Options(opts), r}
eq := Equal(x, y, opts...)
d := r.String()
if (d == "") != eq {
panic("inconsistent difference and equality results")
}
return d
}
type state struct {
// These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
reporter reporter // Optional reporter used for difference formatting
// dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value.
dynChecker dynChecker
// These fields, once set by processOption, will not change.
exporters map[reflect.Type]bool // Set of structs with unexported field visibility
opts Options // List of all fundamental and filter options
}
func newState(opts []Option) *state {
s := new(state)
for _, opt := range opts {
s.processOption(opt)
}
return s
}
func (s *state) processOption(opt Option) {
switch opt := opt.(type) {
case nil:
case Options:
for _, o := range opt {
s.processOption(o)
}
case coreOption:
type filtered interface {
isFiltered() bool
}
if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
}
s.opts = append(s.opts, opt)
case visibleStructs:
if s.exporters == nil {
s.exporters = make(map[reflect.Type]bool)
}
for t := range opt {
s.exporters[t] = true
}
case reporter:
if s.reporter != nil {
panic("difference reporter already registered")
}
s.reporter = opt
default:
panic(fmt.Sprintf("unknown option %T", opt))
}
}
// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
// We do not save and restore the curPath because all of the compareX
// methods should properly push and pop from the path.
// It is an implementation bug if the contents of curPath differs from
// when calling this function to when returning from it.
oldResult, oldReporter := s.result, s.reporter
s.result = diff.Result{} // Reset result
s.reporter = nil // Remove reporter to avoid spurious printouts
s.compareAny(vx, vy)
res := s.result
s.result, s.reporter = oldResult, oldReporter
return res
}
func (s *state) compareAny(vx, vy reflect.Value) {
// TODO: Support cyclic data structures.
// Rule 0: Differing types are never equal.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), vx, vy)
return
}
if vx.Type() != vy.Type() {
s.report(false, vx, vy) // Possible for path to be empty
return
}
t := vx.Type()
if len(s.curPath) == 0 {
s.curPath.push(&pathStep{typ: t})
defer s.curPath.pop()
}
vx, vy = s.tryExporting(vx, vy)
// Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(vx, vy, t) {
return
}
// Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(vx, vy, t) {
return
}
// Rule 3: Recursively descend into each value's underlying kind.
switch t.Kind() {
case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), vx, vy)
return
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), vx, vy)
return
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), vx, vy)
return
case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), vx, vy)
return
case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), vx, vy)
return
case reflect.String:
s.report(vx.String() == vy.String(), vx, vy)
return
case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), vx, vy)
return
case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
case reflect.Ptr:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
s.curPath.push(&indirect{pathStep{t.Elem()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Interface:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
if vx.Elem().Type() != vy.Elem().Type() {
s.report(false, vx.Elem(), vy.Elem())
return
}
s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Slice:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
fallthrough
case reflect.Array:
s.compareArray(vx, vy, t)
return
case reflect.Map:
s.compareMap(vx, vy, t)
return
case reflect.Struct:
s.compareStruct(vx, vy, t)
return
default:
panic(fmt.Sprintf("%v kind not handled", t.Kind()))
}
}
func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
if sf.force {
// Use unsafe pointer arithmetic to get read-write access to an
// unexported field in the struct.
vx = unsafeRetrieveField(sf.pvx, sf.field)
vy = unsafeRetrieveField(sf.pvy, sf.field)
} else {
// We are not allowed to export the value, so invalidate them
// so that tryOptions can panic later if not explicitly ignored.
vx = nothing
vy = nothing
}
}
return vx, vy
}
func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
// If there were no FilterValues, we will not detect invalid inputs,
// so manually check for them and append invalid if necessary.
// We still evaluate the options since an ignore can override invalid.
opts := s.opts
if !vx.IsValid() || !vy.IsValid() {
opts = Options{opts, invalid{}}
}
// Evaluate all filters and apply the remaining options.
if opt := opts.filter(s, vx, vy, t); opt != nil {
opt.apply(s, vx, vy)
return true
}
return false
}
func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
// Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) {
return false
}
eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, vx, vy)
return true
}
func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
v = sanitizeValue(v, f.Type().In(0))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0]
}
// Run the function twice and ensure that we get the same results back.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, v)
want := f.Call([]reflect.Value{v})[0]
if got := <-c; !s.statelessCompare(got, want).Equal() {
// To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself.
if !s.statelessCompare(want, want).Equal() {
return want
}
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
}
return want
}
func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
x = sanitizeValue(x, f.Type().In(0))
y = sanitizeValue(y, f.Type().In(1))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{x, y})[0].Bool()
}
// Swapping the input arguments is sufficient to check that
// f is symmetric and deterministic.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, y, x)
want := f.Call([]reflect.Value{x, y})[0].Bool()
if got := <-c; !got.IsValid() || got.Bool() != want {
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
}
return want
}
func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
var ret reflect.Value
defer func() {
recover() // Ignore panics, let the other call to f panic instead
c <- ret
}()
ret = f.Call(vs)[0]
}
// sanitizeValue converts nil interfaces of type T to those of type R,
// assuming that T is assignable to R.
// Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
// TODO(dsnet): Remove this hacky workaround.
// See https://golang.org/issue/22143
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem()
}
return v
}
func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
s.curPath.push(step)
// Compute an edit-script for slices vx and vy.
es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
step.xkey, step.ykey = ix, iy
return s.statelessCompare(vx.Index(ix), vy.Index(iy))
})
// Report the entire slice as is if the arrays are of primitive kind,
// and the arrays are different enough.
isPrimitive := false
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
isPrimitive = true
}
if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 {
s.curPath.pop() // Pop first since we are reporting the whole slice
s.report(false, vx, vy)
return
}
// Replay the edit-script.
var ix, iy int
for _, e := range es {
switch e {
case diff.UniqueX:
step.xkey, step.ykey = ix, -1
s.report(false, vx.Index(ix), nothing)
ix++
case diff.UniqueY:
step.xkey, step.ykey = -1, iy
s.report(false, nothing, vy.Index(iy))
iy++
default:
step.xkey, step.ykey = ix, iy
if e == diff.Identity {
s.report(true, vx.Index(ix), vy.Index(iy))
} else {
s.compareAny(vx.Index(ix), vy.Index(iy))
}
ix++
iy++
}
}
s.curPath.pop()
return
}
func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := &mapIndex{pathStep: pathStep{t.Elem()}}
s.curPath.push(step)
defer s.curPath.pop()
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.key = k
vvx := vx.MapIndex(k)
vvy := vy.MapIndex(k)
switch {
case vvx.IsValid() && vvy.IsValid():
s.compareAny(vvx, vvy)
case vvx.IsValid() && !vvy.IsValid():
s.report(false, vvx, nothing)
case !vvx.IsValid() && vvy.IsValid():
s.report(false, nothing, vvy)
default:
// It is possible for both vvx and vvy to be invalid if the
// key contained a NaN value in it. There is no way in
// reflection to be able to retrieve these values.
// See https://golang.org/issue/11104
panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
}
}
}
func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
var vax, vay reflect.Value // Addressable versions of vx and vy
step := &structField{}
s.curPath.push(step)
defer s.curPath.pop()
for i := 0; i < t.NumField(); i++ {
vvx := vx.Field(i)
vvy := vy.Field(i)
step.typ = t.Field(i).Type
step.name = t.Field(i).Name
step.idx = i
step.unexported = !isExported(step.name)
if step.unexported {
// Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() {
// For unsafeRetrieveField to work, the parent struct must
// be addressable. Create a new copy of the values if
// necessary to make them addressable.
vax = makeAddressable(vx)
vay = makeAddressable(vy)
}
step.force = s.exporters[t]
step.pvx = vax
step.pvy = vay
step.field = t.Field(i)
}
s.compareAny(vvx, vvy)
}
}
// report records the result of a single comparison.
// It also calls Report if any reporter is registered.
func (s *state) report(eq bool, vx, vy reflect.Value) {
if eq {
s.result.NSame++
} else {
s.result.NDiff++
}
if s.reporter != nil {
s.reporter.Report(vx, vy, eq, s.curPath)
}
}
// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }
// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
ok := dc.curr == dc.next
if ok {
dc.curr = 0
dc.next++
}
dc.curr++
return ok
}
// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
if v.CanAddr() {
return v
}
vc := reflect.New(v.Type()).Elem()
vc.Set(v)
return vc
}

View file

@ -0,0 +1,17 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !debug
package diff
var debug debugger
type debugger struct{}
func (debugger) Begin(_, _ int, f EqualFunc, _, _ *EditScript) EqualFunc {
return f
}
func (debugger) Update() {}
func (debugger) Finish() {}

View file

@ -0,0 +1,122 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build debug
package diff
import (
"fmt"
"strings"
"sync"
"time"
)
// The algorithm can be seen running in real-time by enabling debugging:
// go test -tags=debug -v
//
// Example output:
// === RUN TestDifference/#34
// ┌───────────────────────────────┐
// │ \ · · · · · · · · · · · · · · │
// │ · # · · · · · · · · · · · · · │
// │ · \ · · · · · · · · · · · · · │
// │ · · \ · · · · · · · · · · · · │
// │ · · · X # · · · · · · · · · · │
// │ · · · # \ · · · · · · · · · · │
// │ · · · · · # # · · · · · · · · │
// │ · · · · · # \ · · · · · · · · │
// │ · · · · · · · \ · · · · · · · │
// │ · · · · · · · · \ · · · · · · │
// │ · · · · · · · · · \ · · · · · │
// │ · · · · · · · · · · \ · · # · │
// │ · · · · · · · · · · · \ # # · │
// │ · · · · · · · · · · · # # # · │
// │ · · · · · · · · · · # # # # · │
// │ · · · · · · · · · # # # # # · │
// │ · · · · · · · · · · · · · · \ │
// └───────────────────────────────┘
// [.Y..M.XY......YXYXY.|]
//
// The grid represents the edit-graph where the horizontal axis represents
// list X and the vertical axis represents list Y. The start of the two lists
// is the top-left, while the ends are the bottom-right. The '·' represents
// an unexplored node in the graph. The '\' indicates that the two symbols
// from list X and Y are equal. The 'X' indicates that two symbols are similar
// (but not exactly equal) to each other. The '#' indicates that the two symbols
// are different (and not similar). The algorithm traverses this graph trying to
// make the paths starting in the top-left and the bottom-right connect.
//
// The series of '.', 'X', 'Y', and 'M' characters at the bottom represents
// the currently established path from the forward and reverse searches,
// separated by a '|' character.
const (
updateDelay = 100 * time.Millisecond
finishDelay = 500 * time.Millisecond
ansiTerminal = true // ANSI escape codes used to move terminal cursor
)
var debug debugger
type debugger struct {
sync.Mutex
p1, p2 EditScript
fwdPath, revPath *EditScript
grid []byte
lines int
}
func (dbg *debugger) Begin(nx, ny int, f EqualFunc, p1, p2 *EditScript) EqualFunc {
dbg.Lock()
dbg.fwdPath, dbg.revPath = p1, p2
top := "┌─" + strings.Repeat("──", nx) + "┐\n"
row := "│ " + strings.Repeat("· ", nx) + "│\n"
btm := "└─" + strings.Repeat("──", nx) + "┘\n"
dbg.grid = []byte(top + strings.Repeat(row, ny) + btm)
dbg.lines = strings.Count(dbg.String(), "\n")
fmt.Print(dbg)
// Wrap the EqualFunc so that we can intercept each result.
return func(ix, iy int) (r Result) {
cell := dbg.grid[len(top)+iy*len(row):][len("│ ")+len("· ")*ix:][:len("·")]
for i := range cell {
cell[i] = 0 // Zero out the multiple bytes of UTF-8 middle-dot
}
switch r = f(ix, iy); {
case r.Equal():
cell[0] = '\\'
case r.Similar():
cell[0] = 'X'
default:
cell[0] = '#'
}
return
}
}
func (dbg *debugger) Update() {
dbg.print(updateDelay)
}
func (dbg *debugger) Finish() {
dbg.print(finishDelay)
dbg.Unlock()
}
func (dbg *debugger) String() string {
dbg.p1, dbg.p2 = *dbg.fwdPath, dbg.p2[:0]
for i := len(*dbg.revPath) - 1; i >= 0; i-- {
dbg.p2 = append(dbg.p2, (*dbg.revPath)[i])
}
return fmt.Sprintf("%s[%v|%v]\n\n", dbg.grid, dbg.p1, dbg.p2)
}
func (dbg *debugger) print(d time.Duration) {
if ansiTerminal {
fmt.Printf("\x1b[%dA", dbg.lines) // Reset terminal cursor
}
fmt.Print(dbg)
time.Sleep(d)
}

View file

@ -0,0 +1,363 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package diff implements an algorithm for producing edit-scripts.
// The edit-script is a sequence of operations needed to transform one list
// of symbols into another (or vice-versa). The edits allowed are insertions,
// deletions, and modifications. The summation of all edits is called the
// Levenshtein distance as this problem is well-known in computer science.
//
// This package prioritizes performance over accuracy. That is, the run time
// is more important than obtaining a minimal Levenshtein distance.
package diff
// EditType represents a single operation within an edit-script.
type EditType uint8
const (
// Identity indicates that a symbol pair is identical in both list X and Y.
Identity EditType = iota
// UniqueX indicates that a symbol only exists in X and not Y.
UniqueX
// UniqueY indicates that a symbol only exists in Y and not X.
UniqueY
// Modified indicates that a symbol pair is a modification of each other.
Modified
)
// EditScript represents the series of differences between two lists.
type EditScript []EditType
// String returns a human-readable string representing the edit-script where
// Identity, UniqueX, UniqueY, and Modified are represented by the
// '.', 'X', 'Y', and 'M' characters, respectively.
func (es EditScript) String() string {
b := make([]byte, len(es))
for i, e := range es {
switch e {
case Identity:
b[i] = '.'
case UniqueX:
b[i] = 'X'
case UniqueY:
b[i] = 'Y'
case Modified:
b[i] = 'M'
default:
panic("invalid edit-type")
}
}
return string(b)
}
// stats returns a histogram of the number of each type of edit operation.
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
for _, e := range es {
switch e {
case Identity:
s.NI++
case UniqueX:
s.NX++
case UniqueY:
s.NY++
case Modified:
s.NM++
default:
panic("invalid edit-type")
}
}
return
}
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
// lists X and Y are equal.
func (es EditScript) Dist() int { return len(es) - es.stats().NI }
// LenX is the length of the X list.
func (es EditScript) LenX() int { return len(es) - es.stats().NY }
// LenY is the length of the Y list.
func (es EditScript) LenY() int { return len(es) - es.stats().NX }
// EqualFunc reports whether the symbols at indexes ix and iy are equal.
// When called by Difference, the index is guaranteed to be within nx and ny.
type EqualFunc func(ix int, iy int) Result
// Result is the result of comparison.
// NSame is the number of sub-elements that are equal.
// NDiff is the number of sub-elements that are not equal.
type Result struct{ NSame, NDiff int }
// Equal indicates whether the symbols are equal. Two symbols are equal
// if and only if NDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NDiff == 0 }
// Similar indicates whether two symbols are similar and may be represented
// by using the Modified type. As a special case, we consider binary comparisons
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
//
// The exact ratio of NSame to NDiff to determine similarity may change.
func (r Result) Similar() bool {
// Use NSame+1 to offset NSame so that binary comparisons are similar.
return r.NSame+1 >= r.NDiff
}
// Difference reports whether two lists of lengths nx and ny are equal
// given the definition of equality provided as f.
//
// This function returns an edit-script, which is a sequence of operations
// needed to convert one list into the other. The following invariants for
// the edit-script are maintained:
// • eq == (es.Dist()==0)
// • nx == es.LenX()
// • ny == es.LenY()
//
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
// produces an edit-script with a minimal Levenshtein distance). This algorithm
// favors performance over optimality. The exact output is not guaranteed to
// be stable and may change over time.
func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// This algorithm is based on traversing what is known as an "edit-graph".
// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
// by Eugene W. Myers. Since D can be as large as N itself, this is
// effectively O(N^2). Unlike the algorithm from that paper, we are not
// interested in the optimal path, but at least some "decent" path.
//
// For example, let X and Y be lists of symbols:
// X = [A B C A B B A]
// Y = [C B A B A C]
//
// The edit-graph can be drawn as the following:
// A B C A B B A
// ┌─────────────┐
// C │_|_|\|_|_|_|_│ 0
// B │_|\|_|_|\|\|_│ 1
// A │\|_|_|\|_|_|\│ 2
// B │_|\|_|_|\|\|_│ 3
// A │\|_|_|\|_|_|\│ 4
// C │ | |\| | | | │ 5
// └─────────────┘ 6
// 0 1 2 3 4 5 6 7
//
// List X is written along the horizontal axis, while list Y is written
// along the vertical axis. At any point on this grid, if the symbol in
// list X matches the corresponding symbol in list Y, then a '\' is drawn.
// The goal of any minimal edit-script algorithm is to find a path from the
// top-left corner to the bottom-right corner, while traveling through the
// fewest horizontal or vertical edges.
// A horizontal edge is equivalent to inserting a symbol from list X.
// A vertical edge is equivalent to inserting a symbol from list Y.
// A diagonal edge is equivalent to a matching symbol between both X and Y.
// Invariants:
// • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
// • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
//
// In general:
// • fwdFrontier.X < revFrontier.X
// • fwdFrontier.Y < revFrontier.Y
// Unless, it is time for the algorithm to terminate.
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
fwdFrontier := fwdPath.point // Forward search frontier
revFrontier := revPath.point // Reverse search frontier
// Search budget bounds the cost of searching for better paths.
// The longest sequence of non-matching symbols that can be tolerated is
// approximately the square-root of the search budget.
searchBudget := 4 * (nx + ny) // O(n)
// The algorithm below is a greedy, meet-in-the-middle algorithm for
// computing sub-optimal edit-scripts between two lists.
//
// The algorithm is approximately as follows:
// • Searching for differences switches back-and-forth between
// a search that starts at the beginning (the top-left corner), and
// a search that starts at the end (the bottom-right corner). The goal of
// the search is connect with the search from the opposite corner.
// • As we search, we build a path in a greedy manner, where the first
// match seen is added to the path (this is sub-optimal, but provides a
// decent result in practice). When matches are found, we try the next pair
// of symbols in the lists and follow all matches as far as possible.
// • When searching for matches, we search along a diagonal going through
// through the "frontier" point. If no matches are found, we advance the
// frontier towards the opposite corner.
// • This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
//
// This algorithm is correct even if searching only in the forward direction
// or in the reverse direction. We do both because it is commonly observed
// that two lists commonly differ because elements were added to the front
// or end of the other list.
//
// Running the tests with the "debug" build tag prints a visualization of
// the algorithm running in real-time. This is educational for understanding
// how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
for {
// Forward search from the beginning.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
switch {
case p.X >= revPath.X || p.Y < fwdPath.Y:
stop1 = true // Hit top-right corner
case p.Y >= revPath.Y || p.X < fwdPath.X:
stop2 = true // Hit bottom-left corner
case f(p.X, p.Y).Equal():
// Match found, so connect the path to this point.
fwdPath.connect(p, f)
fwdPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(fwdPath.X, fwdPath.Y).Equal() {
break
}
fwdPath.append(Identity)
}
fwdFrontier = fwdPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards reverse point.
if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
fwdFrontier.X++
} else {
fwdFrontier.Y++
}
// Reverse search from the end.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{revFrontier.X - z, revFrontier.Y + z}
switch {
case fwdPath.X >= p.X || revPath.Y < p.Y:
stop1 = true // Hit bottom-left corner
case fwdPath.Y >= p.Y || revPath.X < p.X:
stop2 = true // Hit top-right corner
case f(p.X-1, p.Y-1).Equal():
// Match found, so connect the path to this point.
revPath.connect(p, f)
revPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(revPath.X-1, revPath.Y-1).Equal() {
break
}
revPath.append(Identity)
}
revFrontier = revPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards forward point.
if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
revFrontier.X--
} else {
revFrontier.Y--
}
}
// Join the forward and reverse paths and then append the reverse path.
fwdPath.connect(revPath.point, f)
for i := len(revPath.es) - 1; i >= 0; i-- {
t := revPath.es[i]
revPath.es = revPath.es[:i]
fwdPath.append(t)
}
debug.Finish()
return fwdPath.es
}
type path struct {
dir int // +1 if forward, -1 if reverse
point // Leading point of the EditScript path
es EditScript
}
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
// to the edit-script to connect p.point to dst.
func (p *path) connect(dst point, f EqualFunc) {
if p.dir > 0 {
// Connect in forward direction.
for dst.X > p.X && dst.Y > p.Y {
switch r := f(p.X, p.Y); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case dst.X-p.X >= dst.Y-p.Y:
p.append(UniqueX)
default:
p.append(UniqueY)
}
}
for dst.X > p.X {
p.append(UniqueX)
}
for dst.Y > p.Y {
p.append(UniqueY)
}
} else {
// Connect in reverse direction.
for p.X > dst.X && p.Y > dst.Y {
switch r := f(p.X-1, p.Y-1); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case p.Y-dst.Y >= p.X-dst.X:
p.append(UniqueY)
default:
p.append(UniqueX)
}
}
for p.X > dst.X {
p.append(UniqueX)
}
for p.Y > dst.Y {
p.append(UniqueY)
}
}
}
func (p *path) append(t EditType) {
p.es = append(p.es, t)
switch t {
case Identity, Modified:
p.add(p.dir, p.dir)
case UniqueX:
p.add(p.dir, 0)
case UniqueY:
p.add(0, p.dir)
}
debug.Update()
}
type point struct{ X, Y int }
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
func zigzag(x int) int {
if x&1 != 0 {
x = ^x
}
return x >> 1
}

View file

@ -0,0 +1,49 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package function identifies function types.
package function
import "reflect"
type funcType int
const (
_ funcType = iota
ttbFunc // func(T, T) bool
tibFunc // func(T, I) bool
trFunc // func(T) R
Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool
)
var boolType = reflect.TypeOf(true)
// IsType reports whether the reflect.Type is of the specified function type.
func IsType(t reflect.Type, ft funcType) bool {
if t == nil || t.Kind() != reflect.Func || t.IsVariadic() {
return false
}
ni, no := t.NumIn(), t.NumOut()
switch ft {
case ttbFunc: // func(T, T) bool
if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType {
return true
}
case tibFunc: // func(T, I) bool
if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType {
return true
}
case trFunc: // func(T) R
if ni == 1 && no == 1 {
return true
}
}
return false
}

View file

@ -0,0 +1,277 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package value provides functionality for reflect.Value types.
package value
import (
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
)
var stringerIface = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
// Format formats the value v as a string.
//
// This is similar to fmt.Sprintf("%+v", v) except this:
// * Prints the type unless it can be elided
// * Avoids printing struct fields that are zero
// * Prints a nil-slice as being nil, not empty
// * Prints map entries in deterministic order
func Format(v reflect.Value, conf FormatConfig) string {
conf.printType = true
conf.followPointers = true
conf.realPointers = true
return formatAny(v, conf, nil)
}
type FormatConfig struct {
UseStringer bool // Should the String method be used if available?
printType bool // Should we print the type before the value?
PrintPrimitiveType bool // Should we print the type of primitives?
followPointers bool // Should we recursively follow pointers?
realPointers bool // Should we print the real address of pointers?
}
func formatAny(v reflect.Value, conf FormatConfig, visited map[uintptr]bool) string {
// TODO: Should this be a multi-line printout in certain situations?
if !v.IsValid() {
return "<non-existent>"
}
if conf.UseStringer && v.Type().Implements(stringerIface) && v.CanInterface() {
if (v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface) && v.IsNil() {
return "<nil>"
}
const stringerPrefix = "s" // Indicates that the String method was used
s := v.Interface().(fmt.Stringer).String()
return stringerPrefix + formatString(s)
}
switch v.Kind() {
case reflect.Bool:
return formatPrimitive(v.Type(), v.Bool(), conf)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return formatPrimitive(v.Type(), v.Int(), conf)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Type().PkgPath() == "" || v.Kind() == reflect.Uintptr {
// Unnamed uints are usually bytes or words, so use hexadecimal.
return formatPrimitive(v.Type(), formatHex(v.Uint()), conf)
}
return formatPrimitive(v.Type(), v.Uint(), conf)
case reflect.Float32, reflect.Float64:
return formatPrimitive(v.Type(), v.Float(), conf)
case reflect.Complex64, reflect.Complex128:
return formatPrimitive(v.Type(), v.Complex(), conf)
case reflect.String:
return formatPrimitive(v.Type(), formatString(v.String()), conf)
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return formatPointer(v, conf)
case reflect.Ptr:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("(%v)(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] || !conf.followPointers {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
return "&" + formatAny(v.Elem(), conf, visited)
case reflect.Interface:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
return formatAny(v.Elem(), conf, visited)
case reflect.Slice:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
fallthrough
case reflect.Array:
var ss []string
subConf := conf
subConf.printType = v.Type().Elem().Kind() == reflect.Interface
for i := 0; i < v.Len(); i++ {
s := formatAny(v.Index(i), subConf, visited)
ss = append(ss, s)
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Map:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
var ss []string
keyConf, valConf := conf, conf
keyConf.printType = v.Type().Key().Kind() == reflect.Interface
keyConf.followPointers = false
valConf.printType = v.Type().Elem().Kind() == reflect.Interface
for _, k := range SortKeys(v.MapKeys()) {
sk := formatAny(k, keyConf, visited)
sv := formatAny(v.MapIndex(k), valConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", sk, sv))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Struct:
var ss []string
subConf := conf
subConf.printType = true
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if isZero(vv) {
continue // Elide zero value fields
}
name := v.Type().Field(i).Name
subConf.UseStringer = conf.UseStringer
s := formatAny(vv, subConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", name, s))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !unicode.IsPrint(r)
}
if strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
func formatPrimitive(t reflect.Type, v interface{}, conf FormatConfig) string {
if conf.printType && (conf.PrintPrimitiveType || t.PkgPath() != "") {
return fmt.Sprintf("%v(%v)", t, v)
}
return fmt.Sprintf("%v", v)
}
func formatPointer(v reflect.Value, conf FormatConfig) string {
p := v.Pointer()
if !conf.realPointers {
p = 0 // For deterministic printing purposes
}
s := formatHex(uint64(p))
if conf.printType {
return fmt.Sprintf("(%v)(%s)", v.Type(), s)
}
return s
}
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}
// insertPointer insert p into m, allocating m if necessary.
func insertPointer(m map[uintptr]bool, p uintptr) map[uintptr]bool {
if m == nil {
m = make(map[uintptr]bool)
}
m[p] = true
return m
}
// isZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func isZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Complex64, reflect.Complex128:
return v.Complex() == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !isZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !isZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View file

@ -0,0 +1,111 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"fmt"
"math"
"reflect"
"sort"
)
// SortKeys sorts a list of map keys, deduplicating keys if necessary.
// The type of each value must be comparable.
func SortKeys(vs []reflect.Value) []reflect.Value {
if len(vs) == 0 {
return vs
}
// Sort the map keys.
sort.Sort(valueSorter(vs))
// Deduplicate keys (fails for NaNs).
vs2 := vs[:1]
for _, v := range vs[1:] {
if isLess(vs2[len(vs2)-1], v) {
vs2 = append(vs2, v)
}
}
return vs2
}
// TODO: Use sort.Slice once Google AppEngine is on Go1.8 or above.
type valueSorter []reflect.Value
func (vs valueSorter) Len() int { return len(vs) }
func (vs valueSorter) Less(i, j int) bool { return isLess(vs[i], vs[j]) }
func (vs valueSorter) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
// isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool {
switch x.Type().Kind() {
case reflect.Bool:
return !x.Bool() && y.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return x.Int() < y.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return x.Uint() < y.Uint()
case reflect.Float32, reflect.Float64:
fx, fy := x.Float(), y.Float()
return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy)
case reflect.Complex64, reflect.Complex128:
cx, cy := x.Complex(), y.Complex()
rx, ix, ry, iy := real(cx), imag(cx), real(cy), imag(cy)
if rx == ry || (math.IsNaN(rx) && math.IsNaN(ry)) {
return ix < iy || math.IsNaN(ix) && !math.IsNaN(iy)
}
return rx < ry || math.IsNaN(rx) && !math.IsNaN(ry)
case reflect.Ptr, reflect.UnsafePointer, reflect.Chan:
return x.Pointer() < y.Pointer()
case reflect.String:
return x.String() < y.String()
case reflect.Array:
for i := 0; i < x.Len(); i++ {
if isLess(x.Index(i), y.Index(i)) {
return true
}
if isLess(y.Index(i), x.Index(i)) {
return false
}
}
return false
case reflect.Struct:
for i := 0; i < x.NumField(); i++ {
if isLess(x.Field(i), y.Field(i)) {
return true
}
if isLess(y.Field(i), x.Field(i)) {
return false
}
}
return false
case reflect.Interface:
vx, vy := x.Elem(), y.Elem()
if !vx.IsValid() || !vy.IsValid() {
return !vx.IsValid() && vy.IsValid()
}
tx, ty := vx.Type(), vy.Type()
if tx == ty {
return isLess(x.Elem(), y.Elem())
}
if tx.Kind() != ty.Kind() {
return vx.Kind() < vy.Kind()
}
if tx.String() != ty.String() {
return tx.String() < ty.String()
}
if tx.PkgPath() != ty.PkgPath() {
return tx.PkgPath() < ty.PkgPath()
}
// This can happen in rare situations, so we fallback to just comparing
// the unique pointer for a reflect.Type. This guarantees deterministic
// ordering within a program, but it is obviously not stable.
return reflect.ValueOf(vx.Type()).Pointer() < reflect.ValueOf(vy.Type()).Pointer()
default:
// Must be Func, Map, or Slice; which are not comparable.
panic(fmt.Sprintf("%T is not comparable", x.Type()))
}
}

View file

@ -0,0 +1,453 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"runtime"
"strings"
"github.com/google/go-cmp/cmp/internal/function"
)
// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
type Option interface {
// filter applies all filters and returns the option that remains.
// Each option may only read s.curPath and call s.callTTBFunc.
//
// An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types.
filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption
}
// applicableOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Grouping: Options
type applicableOption interface {
Option
// apply executes the option, which may mutate s or panic.
apply(s *state, vx, vy reflect.Value)
}
// coreOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter
type coreOption interface {
Option
isCore()
}
type core struct{}
func (core) isCore() {}
// Options is a list of Option values that also satisfies the Option interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
// on all individual options held within.
type Options []Option
func (opts Options) filter(s *state, vx, vy reflect.Value, t reflect.Type) (out applicableOption) {
for _, opt := range opts {
switch opt := opt.filter(s, vx, vy, t); opt.(type) {
case ignore:
return ignore{} // Only ignore can short-circuit evaluation
case invalid:
out = invalid{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options:
switch out.(type) {
case nil:
out = opt
case invalid:
// Keep invalid
case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers
}
}
}
return out
}
func (opts Options) apply(s *state, _, _ reflect.Value) {
const warning = "ambiguous set of applicable options"
const help = "consider using filters to ensure at most one Comparer or Transformer may apply"
var ss []string
for _, opt := range flattenOptions(nil, opts) {
ss = append(ss, fmt.Sprint(opt))
}
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", warning, s.curPath, set, help))
}
func (opts Options) String() string {
var ss []string
for _, opt := range opts {
ss = append(ss, fmt.Sprint(opt))
}
return fmt.Sprintf("Options{%s}", strings.Join(ss, ", "))
}
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option {
if f == nil {
panic("invalid path filter function")
}
if opt := normalizeOption(opt); opt != nil {
return &pathFilter{fnc: f, opt: opt}
}
return nil
}
type pathFilter struct {
core
fnc func(Path) bool
opt Option
}
func (f pathFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
if f.fnc(s.curPath) {
return f.opt.filter(s, vx, vy, t)
}
return nil
}
func (f pathFilter) String() string {
fn := getFuncName(reflect.ValueOf(f.fnc).Pointer())
return fmt.Sprintf("FilterPath(%s, %v)", fn, f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If the type of the values is not
// assignable to T, then this filter implicitly returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
// deterministic (i.e., produces the same result when given the same inputs).
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterValues(f interface{}, opt Option) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() {
panic(fmt.Sprintf("invalid values filter function: %T", f))
}
if opt := normalizeOption(opt); opt != nil {
vf := &valuesFilter{fnc: v, opt: opt}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
vf.typ = ti
}
return vf
}
return nil
}
type valuesFilter struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
opt Option
}
func (f valuesFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return invalid{}
}
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, vx, vy, t)
}
return nil
}
func (f valuesFilter) String() string {
fn := getFuncName(f.fnc.Pointer())
return fmt.Sprintf("FilterValues(%s, %v)", fn, f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
func Ignore() Option { return ignore{} }
type ignore struct{ core }
func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return ignore{} }
func (ignore) apply(_ *state, _, _ reflect.Value) { return }
func (ignore) String() string { return "Ignore()" }
// invalid is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields.
type invalid struct{ core }
func (invalid) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return invalid{} }
func (invalid) apply(s *state, _, _ reflect.Value) {
const help = "consider using AllowUnexported or cmpopts.IgnoreUnexported"
panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help))
}
// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
// type T to those of type R and is implicitly filtered to input values
// assignable to T. The transformer must not mutate T in any way.
//
// To help prevent some cases of infinite recursive cycles applying the
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep. If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f))
}
if name == "" {
name = "λ" // Lambda-symbol as place-holder for anonymous transformer
}
if !isValid(name) {
panic(fmt.Sprintf("invalid name: %q", name))
}
tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
tr.typ = ti
}
return tr
}
type transformer struct {
core
name string
typ reflect.Type // T
fnc reflect.Value // func(T) R
}
func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(*transform); !ok {
break // Hit most recent non-Transform step
} else if tr == t.trans {
return nil // Cannot directly use same Transform
}
}
if tr.typ == nil || t.AssignableTo(tr.typ) {
return tr
}
return nil
}
func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
// Update path before calling the Transformer so that dynamic checks
// will use the updated path.
s.curPath.push(&transform{pathStep{tr.fnc.Type().Out(0)}, tr})
defer s.curPath.pop()
vx = s.callTRFunc(tr.fnc, vx)
vy = s.callTRFunc(tr.fnc, vy)
s.compareAny(vx, vy)
}
func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, getFuncName(tr.fnc.Pointer()))
}
// Comparer returns an Option that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
// filtered to input values assignable to T. If T is an interface, it is
// possible that f is called with two values of different concrete types that
// both implement T.
//
// The equality function must be:
// • Symmetric: equal(x, y) == equal(y, x)
// • Deterministic: equal(x, y) == equal(x, y)
// • Pure: equal(x, y) does not modify x or y
func Comparer(f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Equal) || v.IsNil() {
panic(fmt.Sprintf("invalid comparer function: %T", f))
}
cm := &comparer{fnc: v}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
cm.typ = ti
}
return cm
}
type comparer struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm
}
return nil
}
func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, vx, vy)
}
func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", getFuncName(cm.fnc.Pointer()))
}
// AllowUnexported returns an Option that forcibly allows operations on
// unexported fields in certain structs, which are specified by passing in a
// value of each struct type.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// For some cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
//
// Comparer(func(x, y reflect.Type) bool { return x == y })
// Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func AllowUnexported(types ...interface{}) Option {
if !supportAllowUnexported {
panic("AllowUnexported is not supported on purego builds, Google App Engine Standard, or GopherJS")
}
m := make(map[reflect.Type]bool)
for _, typ := range types {
t := reflect.TypeOf(typ)
if t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
}
m[t] = true
}
return visibleStructs(m)
}
type visibleStructs map[reflect.Type]bool
func (visibleStructs) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption {
panic("not implemented")
}
// reporter is an Option that configures how differences are reported.
type reporter interface {
// TODO: Not exported yet.
//
// Perhaps add PushStep and PopStep and change Report to only accept
// a PathStep instead of the full-path? Adding a PushStep and PopStep makes
// it clear that we are traversing the value tree in a depth-first-search
// manner, which has an effect on how values are printed.
Option
// Report is called for every comparison made and will be provided with
// the two values being compared, the equality result, and the
// current path in the value tree. It is possible for x or y to be an
// invalid reflect.Value if one of the values is non-existent;
// which is possible with maps and slices.
Report(x, y reflect.Value, eq bool, p Path)
}
// normalizeOption normalizes the input options such that all Options groups
// are flattened and groups with a single element are reduced to that element.
// Only coreOptions and Options containing coreOptions are allowed.
func normalizeOption(src Option) Option {
switch opts := flattenOptions(nil, Options{src}); len(opts) {
case 0:
return nil
case 1:
return opts[0]
default:
return opts
}
}
// flattenOptions copies all options in src to dst as a flat list.
// Only coreOptions and Options containing coreOptions are allowed.
func flattenOptions(dst, src Options) Options {
for _, opt := range src {
switch opt := opt.(type) {
case nil:
continue
case Options:
dst = flattenOptions(dst, opt)
case coreOption:
dst = append(dst, opt)
default:
panic(fmt.Sprintf("invalid option type: %T", opt))
}
}
return dst
}
// getFuncName returns a short function name from the pointer.
// The string parsing logic works up until Go1.9.
func getFuncName(p uintptr) string {
fnc := runtime.FuncForPC(p)
if fnc == nil {
return "<unknown>"
}
name := fnc.Name() // E.g., "long/path/name/mypkg.(mytype).(long/path/name/mypkg.myfunc)-fm"
if strings.HasSuffix(name, ")-fm") || strings.HasSuffix(name, ")·fm") {
// Strip the package name from method name.
name = strings.TrimSuffix(name, ")-fm")
name = strings.TrimSuffix(name, ")·fm")
if i := strings.LastIndexByte(name, '('); i >= 0 {
methodName := name[i+1:] // E.g., "long/path/name/mypkg.myfunc"
if j := strings.LastIndexByte(methodName, '.'); j >= 0 {
methodName = methodName[j+1:] // E.g., "myfunc"
}
name = name[:i] + methodName // E.g., "long/path/name/mypkg.(mytype)." + "myfunc"
}
}
if i := strings.LastIndexByte(name, '/'); i >= 0 {
// Strip the package name.
name = name[i+1:] // E.g., "mypkg.(mytype).myfunc"
}
return name
}

309
libnetwork/vendor/github.com/google/go-cmp/cmp/path.go generated vendored Normal file
View file

@ -0,0 +1,309 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"unicode"
"unicode/utf8"
)
type (
// Path is a list of PathSteps describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// simply to identify the initial type.
//
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
Path []PathStep
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
PathStep interface {
String() string
Type() reflect.Type // Resulting type after performing the path step
isPathStep()
}
// SliceIndex is an index operation on a slice or array at some index Key.
SliceIndex interface {
PathStep
Key() int // May return -1 if in a split state
// SplitKeys returns the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
SplitKeys() (x int, y int)
isSliceIndex()
}
// MapIndex is an index operation on a map at some index Key.
MapIndex interface {
PathStep
Key() reflect.Value
isMapIndex()
}
// TypeAssertion represents a type assertion on an interface.
TypeAssertion interface {
PathStep
isTypeAssertion()
}
// StructField represents a struct field access on a field called Name.
StructField interface {
PathStep
Name() string
Index() int
isStructField()
}
// Indirect represents pointer indirection on the parent type.
Indirect interface {
PathStep
isIndirect()
}
// Transform is a transformation from the parent type to the current type.
Transform interface {
PathStep
Name() string
Func() reflect.Value
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
Option() Option
isTransform()
}
)
func (pa *Path) push(s PathStep) {
*pa = append(*pa, s)
}
func (pa *Path) pop() {
*pa = (*pa)[:len(*pa)-1]
}
// Last returns the last PathStep in the Path.
// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Last() PathStep {
return pa.Index(-1)
}
// Index returns the ith step in the Path and supports negative indexing.
// A negative index starts counting from the tail of the Path such that -1
// refers to the last step, -2 refers to the second-to-last step, and so on.
// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Index(i int) PathStep {
if i < 0 {
i = len(pa) + i
}
if i < 0 || i >= len(pa) {
return pathStep{}
}
return pa[i]
}
// String returns the simplified path to a node.
// The simplified path only contains struct field accesses.
//
// For example:
// MyMap.MySlices.MyField
func (pa Path) String() string {
var ss []string
for _, s := range pa {
if _, ok := s.(*structField); ok {
ss = append(ss, s.String())
}
}
return strings.TrimPrefix(strings.Join(ss, ""), ".")
}
// GoString returns the path to a specific node using Go syntax.
//
// For example:
// (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
func (pa Path) GoString() string {
var ssPre, ssPost []string
var numIndirect int
for i, s := range pa {
var nextStep PathStep
if i+1 < len(pa) {
nextStep = pa[i+1]
}
switch s := s.(type) {
case *indirect:
numIndirect++
pPre, pPost := "(", ")"
switch nextStep.(type) {
case *indirect:
continue // Next step is indirection, so let them batch up
case *structField:
numIndirect-- // Automatic indirection on struct fields
case nil:
pPre, pPost = "", "" // Last step; no need for parenthesis
}
if numIndirect > 0 {
ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
ssPost = append(ssPost, pPost)
}
numIndirect = 0
continue
case *transform:
ssPre = append(ssPre, s.trans.name+"(")
ssPost = append(ssPost, ")")
continue
case *typeAssertion:
// As a special-case, elide type assertions on anonymous types
// since they are typically generated dynamically and can be very
// verbose. For example, some transforms return interface{} because
// of Go's lack of generics, but typically take in and return the
// exact same concrete type.
if s.Type().PkgPath() == "" {
continue
}
}
ssPost = append(ssPost, s.String())
}
for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
}
return strings.Join(ssPre, "") + strings.Join(ssPost, "")
}
type (
pathStep struct {
typ reflect.Type
}
sliceIndex struct {
pathStep
xkey, ykey int
}
mapIndex struct {
pathStep
key reflect.Value
}
typeAssertion struct {
pathStep
}
structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
force bool // Forcibly allow visibility
pvx, pvy reflect.Value // Parent values
field reflect.StructField // Field information
}
indirect struct {
pathStep
}
transform struct {
pathStep
trans *transformer
}
)
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) String() string {
if ps.typ == nil {
return "<nil>"
}
s := ps.typ.String()
if s == "" || strings.ContainsAny(s, "{}\n") {
return "root" // Type too simple or complex to print
}
return fmt.Sprintf("{%s}", s)
}
func (si sliceIndex) String() string {
switch {
case si.xkey == si.ykey:
return fmt.Sprintf("[%d]", si.xkey)
case si.ykey == -1:
// [5->?] means "I don't know where X[5] went"
return fmt.Sprintf("[%d->?]", si.xkey)
case si.xkey == -1:
// [?->3] means "I don't know where Y[3] came from"
return fmt.Sprintf("[?->%d]", si.ykey)
default:
// [5->3] means "X[5] moved to Y[3]"
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
}
}
func (mi mapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
func (ta typeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
func (sf structField) String() string { return fmt.Sprintf(".%s", sf.name) }
func (in indirect) String() string { return "*" }
func (tf transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
func (si sliceIndex) Key() int {
if si.xkey != si.ykey {
return -1
}
return si.xkey
}
func (si sliceIndex) SplitKeys() (x, y int) { return si.xkey, si.ykey }
func (mi mapIndex) Key() reflect.Value { return mi.key }
func (sf structField) Name() string { return sf.name }
func (sf structField) Index() int { return sf.idx }
func (tf transform) Name() string { return tf.trans.name }
func (tf transform) Func() reflect.Value { return tf.trans.fnc }
func (tf transform) Option() Option { return tf.trans }
func (pathStep) isPathStep() {}
func (sliceIndex) isSliceIndex() {}
func (mapIndex) isMapIndex() {}
func (typeAssertion) isTypeAssertion() {}
func (structField) isStructField() {}
func (indirect) isIndirect() {}
func (transform) isTransform() {}
var (
_ SliceIndex = sliceIndex{}
_ MapIndex = mapIndex{}
_ TypeAssertion = typeAssertion{}
_ StructField = structField{}
_ Indirect = indirect{}
_ Transform = transform{}
_ PathStep = sliceIndex{}
_ PathStep = mapIndex{}
_ PathStep = typeAssertion{}
_ PathStep = structField{}
_ PathStep = indirect{}
_ PathStep = transform{}
)
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// isValid reports whether the identifier is valid.
// Empty and underscore-only strings are not valid.
func isValid(id string) bool {
ok := id != "" && id != "_"
for j, c := range id {
ok = ok && (j > 0 || !unicode.IsDigit(c))
ok = ok && (c == '_' || unicode.IsLetter(c) || unicode.IsDigit(c))
}
return ok
}

View file

@ -0,0 +1,53 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/value"
)
type defaultReporter struct {
Option
diffs []string // List of differences, possibly truncated
ndiffs int // Total number of differences
nbytes int // Number of bytes in diffs
nlines int // Number of lines in diffs
}
var _ reporter = (*defaultReporter)(nil)
func (r *defaultReporter) Report(x, y reflect.Value, eq bool, p Path) {
if eq {
return // Ignore equal results
}
const maxBytes = 4096
const maxLines = 256
r.ndiffs++
if r.nbytes < maxBytes && r.nlines < maxLines {
sx := value.Format(x, value.FormatConfig{UseStringer: true})
sy := value.Format(y, value.FormatConfig{UseStringer: true})
if sx == sy {
// Unhelpful output, so use more exact formatting.
sx = value.Format(x, value.FormatConfig{PrintPrimitiveType: true})
sy = value.Format(y, value.FormatConfig{PrintPrimitiveType: true})
}
s := fmt.Sprintf("%#v:\n\t-: %s\n\t+: %s\n", p, sx, sy)
r.diffs = append(r.diffs, s)
r.nbytes += len(s)
r.nlines += strings.Count(s, "\n")
}
}
func (r *defaultReporter) String() string {
s := strings.Join(r.diffs, "")
if r.ndiffs == len(r.diffs) {
return s
}
return fmt.Sprintf("%s... %d more differences ...", s, r.ndiffs-len(r.diffs))
}

View file

@ -0,0 +1,15 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego appengine js
package cmp
import "reflect"
const supportAllowUnexported = false
func unsafeRetrieveField(reflect.Value, reflect.StructField) reflect.Value {
panic("unsafeRetrieveField is not implemented")
}

View file

@ -0,0 +1,23 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego,!appengine,!js
package cmp
import (
"reflect"
"unsafe"
)
const supportAllowUnexported = true
// unsafeRetrieveField uses unsafe to forcibly retrieve any field from a struct
// such that the value has read-write permissions.
//
// The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve.
func unsafeRetrieveField(v reflect.Value, f reflect.StructField) reflect.Value {
return reflect.NewAt(f.Type, unsafe.Pointer(v.UnsafeAddr()+f.Offset)).Elem()
}

View file

@ -1,50 +0,0 @@
go-difflib
==========
[![Build Status](https://travis-ci.org/pmezard/go-difflib.png?branch=master)](https://travis-ci.org/pmezard/go-difflib)
[![GoDoc](https://godoc.org/github.com/pmezard/go-difflib/difflib?status.svg)](https://godoc.org/github.com/pmezard/go-difflib/difflib)
Go-difflib is a partial port of python 3 difflib package. Its main goal
was to make unified and context diff available in pure Go, mostly for
testing purposes.
The following class and functions (and related tests) have be ported:
* `SequenceMatcher`
* `unified_diff()`
* `context_diff()`
## Installation
```bash
$ go get github.com/pmezard/go-difflib/difflib
```
### Quick Start
Diffs are configured with Unified (or ContextDiff) structures, and can
be output to an io.Writer or returned as a string.
```Go
diff := UnifiedDiff{
A: difflib.SplitLines("foo\nbar\n"),
B: difflib.SplitLines("foo\nbaz\n"),
FromFile: "Original",
ToFile: "Current",
Context: 3,
}
text, _ := GetUnifiedDiffString(diff)
fmt.Printf(text)
```
would output:
```
--- Original
+++ Current
@@ -1,3 +1,3 @@
foo
-bar
+baz
```

View file

@ -1,22 +0,0 @@
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell
Please consider promoting this project if you find it useful.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View file

@ -1,331 +0,0 @@
Testify - Thou Shalt Write Tests
================================
[![Build Status](https://travis-ci.org/stretchr/testify.svg)](https://travis-ci.org/stretchr/testify) [![Go Report Card](https://goreportcard.com/badge/github.com/stretchr/testify)](https://goreportcard.com/report/github.com/stretchr/testify) [![GoDoc](https://godoc.org/github.com/stretchr/testify?status.svg)](https://godoc.org/github.com/stretchr/testify)
Go code (golang) set of packages that provide many tools for testifying that your code will behave as you intend.
Features include:
* [Easy assertions](#assert-package)
* [Mocking](#mock-package)
* [Testing suite interfaces and functions](#suite-package)
Get started:
* Install testify with [one line of code](#installation), or [update it with another](#staying-up-to-date)
* For an introduction to writing test code in Go, see http://golang.org/doc/code.html#Testing
* Check out the API Documentation http://godoc.org/github.com/stretchr/testify
* To make your testing life easier, check out our other project, [gorc](http://github.com/stretchr/gorc)
* A little about [Test-Driven Development (TDD)](http://en.wikipedia.org/wiki/Test-driven_development)
[`assert`](http://godoc.org/github.com/stretchr/testify/assert "API documentation") package
-------------------------------------------------------------------------------------------
The `assert` package provides some helpful methods that allow you to write better test code in Go.
* Prints friendly, easy to read failure descriptions
* Allows for very readable code
* Optionally annotate each assertion with a message
See it in action:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
// assert equality
assert.Equal(t, 123, 123, "they should be equal")
// assert inequality
assert.NotEqual(t, 123, 456, "they should not be equal")
// assert for nil (good for errors)
assert.Nil(t, object)
// assert for not nil (good when you expect something)
if assert.NotNil(t, object) {
// now we know that object isn't nil, we are safe to make
// further assertions without causing any errors
assert.Equal(t, "Something", object.Value)
}
}
```
* Every assert func takes the `testing.T` object as the first argument. This is how it writes the errors out through the normal `go test` capabilities.
* Every assert func returns a bool indicating whether the assertion was successful or not, this is useful for if you want to go on making further assertions under certain conditions.
if you assert many times, use the below:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
assert := assert.New(t)
// assert equality
assert.Equal(123, 123, "they should be equal")
// assert inequality
assert.NotEqual(123, 456, "they should not be equal")
// assert for nil (good for errors)
assert.Nil(object)
// assert for not nil (good when you expect something)
if assert.NotNil(object) {
// now we know that object isn't nil, we are safe to make
// further assertions without causing any errors
assert.Equal("Something", object.Value)
}
}
```
[`require`](http://godoc.org/github.com/stretchr/testify/require "API documentation") package
---------------------------------------------------------------------------------------------
The `require` package provides same global functions as the `assert` package, but instead of returning a boolean result they terminate current test.
See [t.FailNow](http://golang.org/pkg/testing/#T.FailNow) for details.
[`mock`](http://godoc.org/github.com/stretchr/testify/mock "API documentation") package
----------------------------------------------------------------------------------------
The `mock` package provides a mechanism for easily writing mock objects that can be used in place of real objects when writing test code.
An example test function that tests a piece of code that relies on an external object `testObj`, can setup expectations (testify) and assert that they indeed happened:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/mock"
)
/*
Test objects
*/
// MyMockedObject is a mocked object that implements an interface
// that describes an object that the code I am testing relies on.
type MyMockedObject struct{
mock.Mock
}
// DoSomething is a method on MyMockedObject that implements some interface
// and just records the activity, and returns what the Mock object tells it to.
//
// In the real object, this method would do something useful, but since this
// is a mocked object - we're just going to stub it out.
//
// NOTE: This method is not being tested here, code that uses this object is.
func (m *MyMockedObject) DoSomething(number int) (bool, error) {
args := m.Called(number)
return args.Bool(0), args.Error(1)
}
/*
Actual test functions
*/
// TestSomething is an example of how to use our test object to
// make assertions about some target code we are testing.
func TestSomething(t *testing.T) {
// create an instance of our test object
testObj := new(MyMockedObject)
// setup expectations
testObj.On("DoSomething", 123).Return(true, nil)
// call the code we are testing
targetFuncThatDoesSomethingWithObj(testObj)
// assert that the expectations were met
testObj.AssertExpectations(t)
}
// TestSomethingElse is a second example of how to use our test object to
// make assertions about some target code we are testing.
// This time using a placeholder. Placeholders might be used when the
// data being passed in is normally dynamically generated and cannot be
// predicted beforehand (eg. containing hashes that are time sensitive)
func TestSomethingElse(t *testing.T) {
// create an instance of our test object
testObj := new(MyMockedObject)
// setup expectations with a placeholder in the argument list
testObj.On("DoSomething", mock.Anything).Return(true, nil)
// call the code we are testing
targetFuncThatDoesSomethingWithObj(testObj)
// assert that the expectations were met
testObj.AssertExpectations(t)
}
```
For more information on how to write mock code, check out the [API documentation for the `mock` package](http://godoc.org/github.com/stretchr/testify/mock).
You can use the [mockery tool](http://github.com/vektra/mockery) to autogenerate the mock code against an interface as well, making using mocks much quicker.
[`suite`](http://godoc.org/github.com/stretchr/testify/suite "API documentation") package
-----------------------------------------------------------------------------------------
The `suite` package provides functionality that you might be used to from more common object oriented languages. With it, you can build a testing suite as a struct, build setup/teardown methods and testing methods on your struct, and run them with 'go test' as per normal.
An example suite is shown below:
```go
// Basic imports
import (
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/suite"
)
// Define the suite, and absorb the built-in basic suite
// functionality from testify - including a T() method which
// returns the current testing context
type ExampleTestSuite struct {
suite.Suite
VariableThatShouldStartAtFive int
}
// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
suite.VariableThatShouldStartAtFive = 5
}
// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
assert.Equal(suite.T(), 5, suite.VariableThatShouldStartAtFive)
}
// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
suite.Run(t, new(ExampleTestSuite))
}
```
For a more complete example, using all of the functionality provided by the suite package, look at our [example testing suite](https://github.com/stretchr/testify/blob/master/suite/suite_test.go)
For more information on writing suites, check out the [API documentation for the `suite` package](http://godoc.org/github.com/stretchr/testify/suite).
`Suite` object has assertion methods:
```go
// Basic imports
import (
"testing"
"github.com/stretchr/testify/suite"
)
// Define the suite, and absorb the built-in basic suite
// functionality from testify - including assertion methods.
type ExampleTestSuite struct {
suite.Suite
VariableThatShouldStartAtFive int
}
// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
suite.VariableThatShouldStartAtFive = 5
}
// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
suite.Equal(suite.VariableThatShouldStartAtFive, 5)
}
// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
suite.Run(t, new(ExampleTestSuite))
}
```
------
Installation
============
To install Testify, use `go get`:
go get github.com/stretchr/testify
This will then make the following packages available to you:
github.com/stretchr/testify/assert
github.com/stretchr/testify/mock
github.com/stretchr/testify/http
Import the `testify/assert` package into your code using this template:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
assert.True(t, true, "True is true!")
}
```
------
Staying up to date
==================
To update Testify to the latest version, use `go get -u github.com/stretchr/testify`.
------
Supported go versions
==================
We support the three major Go versions, which are 1.8, 1.9 and 1.10 at the moment.
------
Contributing
============
Please feel free to submit issues, fork the repository and send pull requests!
When submitting an issue, we ask that you please include a complete test function that demonstrates the issue. Extra credit for those using Testify to write the test code that demonstrates it.

View file

@ -1,484 +0,0 @@
/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package assert
import (
http "net/http"
url "net/url"
time "time"
)
// Conditionf uses a Comparison to assert a complex condition.
func Conditionf(t TestingT, comp Comparison, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Condition(t, comp, append([]interface{}{msg}, args...)...)
}
// Containsf asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// assert.Containsf(t, "Hello World", "World", "error message %s", "formatted")
// assert.Containsf(t, ["Hello", "World"], "World", "error message %s", "formatted")
// assert.Containsf(t, {"Hello": "World"}, "Hello", "error message %s", "formatted")
func Containsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Contains(t, s, contains, append([]interface{}{msg}, args...)...)
}
// DirExistsf checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func DirExistsf(t TestingT, path string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return DirExists(t, path, append([]interface{}{msg}, args...)...)
}
// ElementsMatchf asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// assert.ElementsMatchf(t, [1, 3, 2, 3], [1, 3, 3, 2], "error message %s", "formatted")
func ElementsMatchf(t TestingT, listA interface{}, listB interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return ElementsMatch(t, listA, listB, append([]interface{}{msg}, args...)...)
}
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Emptyf(t, obj, "error message %s", "formatted")
func Emptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Empty(t, object, append([]interface{}{msg}, args...)...)
}
// Equalf asserts that two objects are equal.
//
// assert.Equalf(t, 123, 123, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func Equalf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Equal(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// EqualErrorf asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// assert.EqualErrorf(t, err, expectedErrorString, "error message %s", "formatted")
func EqualErrorf(t TestingT, theError error, errString string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return EqualError(t, theError, errString, append([]interface{}{msg}, args...)...)
}
// EqualValuesf asserts that two objects are equal or convertable to the same types
// and equal.
//
// assert.EqualValuesf(t, uint32(123, "error message %s", "formatted"), int32(123))
func EqualValuesf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return EqualValues(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// Errorf asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if assert.Errorf(t, err, "error message %s", "formatted") {
// assert.Equal(t, expectedErrorf, err)
// }
func Errorf(t TestingT, err error, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Error(t, err, append([]interface{}{msg}, args...)...)
}
// Exactlyf asserts that two objects are equal in value and type.
//
// assert.Exactlyf(t, int32(123, "error message %s", "formatted"), int64(123))
func Exactlyf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Exactly(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// Failf reports a failure through
func Failf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Fail(t, failureMessage, append([]interface{}{msg}, args...)...)
}
// FailNowf fails test
func FailNowf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return FailNow(t, failureMessage, append([]interface{}{msg}, args...)...)
}
// Falsef asserts that the specified value is false.
//
// assert.Falsef(t, myBool, "error message %s", "formatted")
func Falsef(t TestingT, value bool, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return False(t, value, append([]interface{}{msg}, args...)...)
}
// FileExistsf checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func FileExistsf(t TestingT, path string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return FileExists(t, path, append([]interface{}{msg}, args...)...)
}
// HTTPBodyContainsf asserts that a specified handler returns a
// body that contains a string.
//
// assert.HTTPBodyContainsf(t, myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPBodyContains(t, handler, method, url, values, str, append([]interface{}{msg}, args...)...)
}
// HTTPBodyNotContainsf asserts that a specified handler returns a
// body that does not contain a string.
//
// assert.HTTPBodyNotContainsf(t, myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPBodyNotContains(t, handler, method, url, values, str, append([]interface{}{msg}, args...)...)
}
// HTTPErrorf asserts that a specified handler returns an error status code.
//
// assert.HTTPErrorf(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func HTTPErrorf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPError(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
//
// assert.HTTPRedirectf(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func HTTPRedirectf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPRedirect(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// HTTPSuccessf asserts that a specified handler returns a success status code.
//
// assert.HTTPSuccessf(t, myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccessf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPSuccess(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// Implementsf asserts that an object is implemented by the specified interface.
//
// assert.Implementsf(t, (*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
func Implementsf(t TestingT, interfaceObject interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Implements(t, interfaceObject, object, append([]interface{}{msg}, args...)...)
}
// InDeltaf asserts that the two numerals are within delta of each other.
//
// assert.InDeltaf(t, math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
func InDeltaf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDelta(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InDeltaMapValuesf is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func InDeltaMapValuesf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDeltaMapValues(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InDeltaSlicef is the same as InDelta, except it compares two slices.
func InDeltaSlicef(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDeltaSlice(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
func InEpsilonf(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InEpsilon(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
}
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
func InEpsilonSlicef(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InEpsilonSlice(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
}
// IsTypef asserts that the specified objects are of the same type.
func IsTypef(t TestingT, expectedType interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return IsType(t, expectedType, object, append([]interface{}{msg}, args...)...)
}
// JSONEqf asserts that two JSON strings are equivalent.
//
// assert.JSONEqf(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
func JSONEqf(t TestingT, expected string, actual string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return JSONEq(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// Lenf asserts that the specified object has specific length.
// Lenf also fails if the object has a type that len() not accept.
//
// assert.Lenf(t, mySlice, 3, "error message %s", "formatted")
func Lenf(t TestingT, object interface{}, length int, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Len(t, object, length, append([]interface{}{msg}, args...)...)
}
// Nilf asserts that the specified object is nil.
//
// assert.Nilf(t, err, "error message %s", "formatted")
func Nilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Nil(t, object, append([]interface{}{msg}, args...)...)
}
// NoErrorf asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if assert.NoErrorf(t, err, "error message %s", "formatted") {
// assert.Equal(t, expectedObj, actualObj)
// }
func NoErrorf(t TestingT, err error, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NoError(t, err, append([]interface{}{msg}, args...)...)
}
// NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// assert.NotContainsf(t, "Hello World", "Earth", "error message %s", "formatted")
// assert.NotContainsf(t, ["Hello", "World"], "Earth", "error message %s", "formatted")
// assert.NotContainsf(t, {"Hello": "World"}, "Earth", "error message %s", "formatted")
func NotContainsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotContains(t, s, contains, append([]interface{}{msg}, args...)...)
}
// NotEmptyf asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmptyf(t, obj, "error message %s", "formatted") {
// assert.Equal(t, "two", obj[1])
// }
func NotEmptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotEmpty(t, object, append([]interface{}{msg}, args...)...)
}
// NotEqualf asserts that the specified values are NOT equal.
//
// assert.NotEqualf(t, obj1, obj2, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func NotEqualf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotEqual(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// NotNilf asserts that the specified object is not nil.
//
// assert.NotNilf(t, err, "error message %s", "formatted")
func NotNilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotNil(t, object, append([]interface{}{msg}, args...)...)
}
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanicsf(t, func(){ RemainCalm() }, "error message %s", "formatted")
func NotPanicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotPanics(t, f, append([]interface{}{msg}, args...)...)
}
// NotRegexpf asserts that a specified regexp does not match a string.
//
// assert.NotRegexpf(t, regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
// assert.NotRegexpf(t, "^start", "it's not starting", "error message %s", "formatted")
func NotRegexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotRegexp(t, rx, str, append([]interface{}{msg}, args...)...)
}
// NotSubsetf asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// assert.NotSubsetf(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
func NotSubsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotSubset(t, list, subset, append([]interface{}{msg}, args...)...)
}
// NotZerof asserts that i is not the zero value for its type.
func NotZerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotZero(t, i, append([]interface{}{msg}, args...)...)
}
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panicsf(t, func(){ GoCrazy() }, "error message %s", "formatted")
func Panicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Panics(t, f, append([]interface{}{msg}, args...)...)
}
// PanicsWithValuef asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// assert.PanicsWithValuef(t, "crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
func PanicsWithValuef(t TestingT, expected interface{}, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return PanicsWithValue(t, expected, f, append([]interface{}{msg}, args...)...)
}
// Regexpf asserts that a specified regexp matches a string.
//
// assert.Regexpf(t, regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
// assert.Regexpf(t, "start...$", "it's not starting", "error message %s", "formatted")
func Regexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Regexp(t, rx, str, append([]interface{}{msg}, args...)...)
}
// Subsetf asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// assert.Subsetf(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
func Subsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Subset(t, list, subset, append([]interface{}{msg}, args...)...)
}
// Truef asserts that the specified value is true.
//
// assert.Truef(t, myBool, "error message %s", "formatted")
func Truef(t TestingT, value bool, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return True(t, value, append([]interface{}{msg}, args...)...)
}
// WithinDurationf asserts that the two times are within duration delta of each other.
//
// assert.WithinDurationf(t, time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
func WithinDurationf(t TestingT, expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return WithinDuration(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// Zerof asserts that i is the zero value for its type.
func Zerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Zero(t, i, append([]interface{}{msg}, args...)...)
}

View file

@ -1,956 +0,0 @@
/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package assert
import (
http "net/http"
url "net/url"
time "time"
)
// Condition uses a Comparison to assert a complex condition.
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Condition(a.t, comp, msgAndArgs...)
}
// Conditionf uses a Comparison to assert a complex condition.
func (a *Assertions) Conditionf(comp Comparison, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Conditionf(a.t, comp, msg, args...)
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Contains("Hello World", "World")
// a.Contains(["Hello", "World"], "World")
// a.Contains({"Hello": "World"}, "Hello")
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Contains(a.t, s, contains, msgAndArgs...)
}
// Containsf asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Containsf("Hello World", "World", "error message %s", "formatted")
// a.Containsf(["Hello", "World"], "World", "error message %s", "formatted")
// a.Containsf({"Hello": "World"}, "Hello", "error message %s", "formatted")
func (a *Assertions) Containsf(s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Containsf(a.t, s, contains, msg, args...)
}
// DirExists checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func (a *Assertions) DirExists(path string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return DirExists(a.t, path, msgAndArgs...)
}
// DirExistsf checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func (a *Assertions) DirExistsf(path string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return DirExistsf(a.t, path, msg, args...)
}
// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// a.ElementsMatch([1, 3, 2, 3], [1, 3, 3, 2])
func (a *Assertions) ElementsMatch(listA interface{}, listB interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return ElementsMatch(a.t, listA, listB, msgAndArgs...)
}
// ElementsMatchf asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// a.ElementsMatchf([1, 3, 2, 3], [1, 3, 3, 2], "error message %s", "formatted")
func (a *Assertions) ElementsMatchf(listA interface{}, listB interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return ElementsMatchf(a.t, listA, listB, msg, args...)
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Empty(obj)
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Empty(a.t, object, msgAndArgs...)
}
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Emptyf(obj, "error message %s", "formatted")
func (a *Assertions) Emptyf(object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Emptyf(a.t, object, msg, args...)
}
// Equal asserts that two objects are equal.
//
// a.Equal(123, 123)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Equal(a.t, expected, actual, msgAndArgs...)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// a.EqualError(err, expectedErrorString)
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return EqualError(a.t, theError, errString, msgAndArgs...)
}
// EqualErrorf asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// a.EqualErrorf(err, expectedErrorString, "error message %s", "formatted")
func (a *Assertions) EqualErrorf(theError error, errString string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return EqualErrorf(a.t, theError, errString, msg, args...)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValues(uint32(123), int32(123))
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return EqualValues(a.t, expected, actual, msgAndArgs...)
}
// EqualValuesf asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValuesf(uint32(123, "error message %s", "formatted"), int32(123))
func (a *Assertions) EqualValuesf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return EqualValuesf(a.t, expected, actual, msg, args...)
}
// Equalf asserts that two objects are equal.
//
// a.Equalf(123, 123, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func (a *Assertions) Equalf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Equalf(a.t, expected, actual, msg, args...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Error(err) {
// assert.Equal(t, expectedError, err)
// }
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Error(a.t, err, msgAndArgs...)
}
// Errorf asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Errorf(err, "error message %s", "formatted") {
// assert.Equal(t, expectedErrorf, err)
// }
func (a *Assertions) Errorf(err error, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Errorf(a.t, err, msg, args...)
}
// Exactly asserts that two objects are equal in value and type.
//
// a.Exactly(int32(123), int64(123))
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Exactly(a.t, expected, actual, msgAndArgs...)
}
// Exactlyf asserts that two objects are equal in value and type.
//
// a.Exactlyf(int32(123, "error message %s", "formatted"), int64(123))
func (a *Assertions) Exactlyf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Exactlyf(a.t, expected, actual, msg, args...)
}
// Fail reports a failure through
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Fail(a.t, failureMessage, msgAndArgs...)
}
// FailNow fails test
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return FailNow(a.t, failureMessage, msgAndArgs...)
}
// FailNowf fails test
func (a *Assertions) FailNowf(failureMessage string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return FailNowf(a.t, failureMessage, msg, args...)
}
// Failf reports a failure through
func (a *Assertions) Failf(failureMessage string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Failf(a.t, failureMessage, msg, args...)
}
// False asserts that the specified value is false.
//
// a.False(myBool)
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return False(a.t, value, msgAndArgs...)
}
// Falsef asserts that the specified value is false.
//
// a.Falsef(myBool, "error message %s", "formatted")
func (a *Assertions) Falsef(value bool, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Falsef(a.t, value, msg, args...)
}
// FileExists checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func (a *Assertions) FileExists(path string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return FileExists(a.t, path, msgAndArgs...)
}
// FileExistsf checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func (a *Assertions) FileExistsf(path string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return FileExistsf(a.t, path, msg, args...)
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContains(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPBodyContains(a.t, handler, method, url, values, str, msgAndArgs...)
}
// HTTPBodyContainsf asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContainsf(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPBodyContainsf(a.t, handler, method, url, values, str, msg, args...)
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContains(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPBodyNotContains(a.t, handler, method, url, values, str, msgAndArgs...)
}
// HTTPBodyNotContainsf asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContainsf(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPBodyNotContainsf(a.t, handler, method, url, values, str, msg, args...)
}
// HTTPError asserts that a specified handler returns an error status code.
//
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPError(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPErrorf asserts that a specified handler returns an error status code.
//
// a.HTTPErrorf(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func (a *Assertions) HTTPErrorf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPErrorf(a.t, handler, method, url, values, msg, args...)
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPRedirect(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirectf(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func (a *Assertions) HTTPRedirectf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPRedirectf(a.t, handler, method, url, values, msg, args...)
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPSuccess(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPSuccessf asserts that a specified handler returns a success status code.
//
// a.HTTPSuccessf(myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccessf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return HTTPSuccessf(a.t, handler, method, url, values, msg, args...)
}
// Implements asserts that an object is implemented by the specified interface.
//
// a.Implements((*MyInterface)(nil), new(MyObject))
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Implements(a.t, interfaceObject, object, msgAndArgs...)
}
// Implementsf asserts that an object is implemented by the specified interface.
//
// a.Implementsf((*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
func (a *Assertions) Implementsf(interfaceObject interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Implementsf(a.t, interfaceObject, object, msg, args...)
}
// InDelta asserts that the two numerals are within delta of each other.
//
// a.InDelta(math.Pi, (22 / 7.0), 0.01)
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDelta(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func (a *Assertions) InDeltaMapValues(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDeltaMapValues(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaMapValuesf is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func (a *Assertions) InDeltaMapValuesf(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDeltaMapValuesf(a.t, expected, actual, delta, msg, args...)
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaSlicef is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlicef(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDeltaSlicef(a.t, expected, actual, delta, msg, args...)
}
// InDeltaf asserts that the two numerals are within delta of each other.
//
// a.InDeltaf(math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
func (a *Assertions) InDeltaf(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InDeltaf(a.t, expected, actual, delta, msg, args...)
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InEpsilonSlice(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
func (a *Assertions) InEpsilonSlicef(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InEpsilonSlicef(a.t, expected, actual, epsilon, msg, args...)
}
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
func (a *Assertions) InEpsilonf(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return InEpsilonf(a.t, expected, actual, epsilon, msg, args...)
}
// IsType asserts that the specified objects are of the same type.
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return IsType(a.t, expectedType, object, msgAndArgs...)
}
// IsTypef asserts that the specified objects are of the same type.
func (a *Assertions) IsTypef(expectedType interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return IsTypef(a.t, expectedType, object, msg, args...)
}
// JSONEq asserts that two JSON strings are equivalent.
//
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return JSONEq(a.t, expected, actual, msgAndArgs...)
}
// JSONEqf asserts that two JSON strings are equivalent.
//
// a.JSONEqf(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
func (a *Assertions) JSONEqf(expected string, actual string, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return JSONEqf(a.t, expected, actual, msg, args...)
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// a.Len(mySlice, 3)
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Len(a.t, object, length, msgAndArgs...)
}
// Lenf asserts that the specified object has specific length.
// Lenf also fails if the object has a type that len() not accept.
//
// a.Lenf(mySlice, 3, "error message %s", "formatted")
func (a *Assertions) Lenf(object interface{}, length int, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Lenf(a.t, object, length, msg, args...)
}
// Nil asserts that the specified object is nil.
//
// a.Nil(err)
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Nil(a.t, object, msgAndArgs...)
}
// Nilf asserts that the specified object is nil.
//
// a.Nilf(err, "error message %s", "formatted")
func (a *Assertions) Nilf(object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Nilf(a.t, object, msg, args...)
}
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoError(err) {
// assert.Equal(t, expectedObj, actualObj)
// }
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NoError(a.t, err, msgAndArgs...)
}
// NoErrorf asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoErrorf(err, "error message %s", "formatted") {
// assert.Equal(t, expectedObj, actualObj)
// }
func (a *Assertions) NoErrorf(err error, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NoErrorf(a.t, err, msg, args...)
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContains("Hello World", "Earth")
// a.NotContains(["Hello", "World"], "Earth")
// a.NotContains({"Hello": "World"}, "Earth")
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotContains(a.t, s, contains, msgAndArgs...)
}
// NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContainsf("Hello World", "Earth", "error message %s", "formatted")
// a.NotContainsf(["Hello", "World"], "Earth", "error message %s", "formatted")
// a.NotContainsf({"Hello": "World"}, "Earth", "error message %s", "formatted")
func (a *Assertions) NotContainsf(s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotContainsf(a.t, s, contains, msg, args...)
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmpty(obj) {
// assert.Equal(t, "two", obj[1])
// }
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotEmpty(a.t, object, msgAndArgs...)
}
// NotEmptyf asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmptyf(obj, "error message %s", "formatted") {
// assert.Equal(t, "two", obj[1])
// }
func (a *Assertions) NotEmptyf(object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotEmptyf(a.t, object, msg, args...)
}
// NotEqual asserts that the specified values are NOT equal.
//
// a.NotEqual(obj1, obj2)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotEqual(a.t, expected, actual, msgAndArgs...)
}
// NotEqualf asserts that the specified values are NOT equal.
//
// a.NotEqualf(obj1, obj2, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func (a *Assertions) NotEqualf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotEqualf(a.t, expected, actual, msg, args...)
}
// NotNil asserts that the specified object is not nil.
//
// a.NotNil(err)
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotNil(a.t, object, msgAndArgs...)
}
// NotNilf asserts that the specified object is not nil.
//
// a.NotNilf(err, "error message %s", "formatted")
func (a *Assertions) NotNilf(object interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotNilf(a.t, object, msg, args...)
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanics(func(){ RemainCalm() })
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotPanics(a.t, f, msgAndArgs...)
}
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanicsf(func(){ RemainCalm() }, "error message %s", "formatted")
func (a *Assertions) NotPanicsf(f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotPanicsf(a.t, f, msg, args...)
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting")
// a.NotRegexp("^start", "it's not starting")
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotRegexp(a.t, rx, str, msgAndArgs...)
}
// NotRegexpf asserts that a specified regexp does not match a string.
//
// a.NotRegexpf(regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
// a.NotRegexpf("^start", "it's not starting", "error message %s", "formatted")
func (a *Assertions) NotRegexpf(rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotRegexpf(a.t, rx, str, msg, args...)
}
// NotSubset asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// a.NotSubset([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
func (a *Assertions) NotSubset(list interface{}, subset interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotSubset(a.t, list, subset, msgAndArgs...)
}
// NotSubsetf asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// a.NotSubsetf([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
func (a *Assertions) NotSubsetf(list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotSubsetf(a.t, list, subset, msg, args...)
}
// NotZero asserts that i is not the zero value for its type.
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotZero(a.t, i, msgAndArgs...)
}
// NotZerof asserts that i is not the zero value for its type.
func (a *Assertions) NotZerof(i interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return NotZerof(a.t, i, msg, args...)
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panics(func(){ GoCrazy() })
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Panics(a.t, f, msgAndArgs...)
}
// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// a.PanicsWithValue("crazy error", func(){ GoCrazy() })
func (a *Assertions) PanicsWithValue(expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return PanicsWithValue(a.t, expected, f, msgAndArgs...)
}
// PanicsWithValuef asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// a.PanicsWithValuef("crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
func (a *Assertions) PanicsWithValuef(expected interface{}, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return PanicsWithValuef(a.t, expected, f, msg, args...)
}
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panicsf(func(){ GoCrazy() }, "error message %s", "formatted")
func (a *Assertions) Panicsf(f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Panicsf(a.t, f, msg, args...)
}
// Regexp asserts that a specified regexp matches a string.
//
// a.Regexp(regexp.MustCompile("start"), "it's starting")
// a.Regexp("start...$", "it's not starting")
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Regexp(a.t, rx, str, msgAndArgs...)
}
// Regexpf asserts that a specified regexp matches a string.
//
// a.Regexpf(regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
// a.Regexpf("start...$", "it's not starting", "error message %s", "formatted")
func (a *Assertions) Regexpf(rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Regexpf(a.t, rx, str, msg, args...)
}
// Subset asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// a.Subset([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
func (a *Assertions) Subset(list interface{}, subset interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Subset(a.t, list, subset, msgAndArgs...)
}
// Subsetf asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// a.Subsetf([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
func (a *Assertions) Subsetf(list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Subsetf(a.t, list, subset, msg, args...)
}
// True asserts that the specified value is true.
//
// a.True(myBool)
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return True(a.t, value, msgAndArgs...)
}
// Truef asserts that the specified value is true.
//
// a.Truef(myBool, "error message %s", "formatted")
func (a *Assertions) Truef(value bool, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Truef(a.t, value, msg, args...)
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second)
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
}
// WithinDurationf asserts that the two times are within duration delta of each other.
//
// a.WithinDurationf(time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
func (a *Assertions) WithinDurationf(expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return WithinDurationf(a.t, expected, actual, delta, msg, args...)
}
// Zero asserts that i is the zero value for its type.
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Zero(a.t, i, msgAndArgs...)
}
// Zerof asserts that i is the zero value for its type.
func (a *Assertions) Zerof(i interface{}, msg string, args ...interface{}) bool {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
return Zerof(a.t, i, msg, args...)
}

File diff suppressed because it is too large Load diff

View file

@ -1,45 +0,0 @@
// Package assert provides a set of comprehensive testing tools for use with the normal Go testing system.
//
// Example Usage
//
// The following is a complete example using assert in a standard test function:
// import (
// "testing"
// "github.com/stretchr/testify/assert"
// )
//
// func TestSomething(t *testing.T) {
//
// var a string = "Hello"
// var b string = "Hello"
//
// assert.Equal(t, a, b, "The two words should be the same.")
//
// }
//
// if you assert many times, use the format below:
//
// import (
// "testing"
// "github.com/stretchr/testify/assert"
// )
//
// func TestSomething(t *testing.T) {
// assert := assert.New(t)
//
// var a string = "Hello"
// var b string = "Hello"
//
// assert.Equal(a, b, "The two words should be the same.")
// }
//
// Assertions
//
// Assertions allow you to easily write test code, and are global funcs in the `assert` package.
// All assertion functions take, as the first argument, the `*testing.T` object provided by the
// testing framework. This allows the assertion funcs to write the failings and other details to
// the correct place.
//
// Every assertion function also takes an optional string message as the final argument,
// allowing custom error messages to be appended to the message the assertion method outputs.
package assert

View file

@ -1,10 +0,0 @@
package assert
import (
"errors"
)
// AnError is an error instance useful for testing. If the code does not care
// about error specifics, and only needs to return the error for example, this
// error should be used to make the test code more readable.
var AnError = errors.New("assert.AnError general error for testing")

View file

@ -1,16 +0,0 @@
package assert
// Assertions provides assertion methods around the
// TestingT interface.
type Assertions struct {
t TestingT
}
// New makes a new Assertions object for the specified TestingT.
func New(t TestingT) *Assertions {
return &Assertions{
t: t,
}
}
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl -include-format-funcs

View file

@ -1,143 +0,0 @@
package assert
import (
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"strings"
)
// httpCode is a helper that returns HTTP code of the response. It returns -1 and
// an error if building a new request fails.
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) (int, error) {
w := httptest.NewRecorder()
req, err := http.NewRequest(method, url, nil)
if err != nil {
return -1, err
}
req.URL.RawQuery = values.Encode()
handler(w, req)
return w.Code, nil
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
return false
}
isSuccessCode := code >= http.StatusOK && code <= http.StatusPartialContent
if !isSuccessCode {
Fail(t, fmt.Sprintf("Expected HTTP success status code for %q but received %d", url+"?"+values.Encode(), code))
}
return isSuccessCode
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
return false
}
isRedirectCode := code >= http.StatusMultipleChoices && code <= http.StatusTemporaryRedirect
if !isRedirectCode {
Fail(t, fmt.Sprintf("Expected HTTP redirect status code for %q but received %d", url+"?"+values.Encode(), code))
}
return isRedirectCode
}
// HTTPError asserts that a specified handler returns an error status code.
//
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
return false
}
isErrorCode := code >= http.StatusBadRequest
if !isErrorCode {
Fail(t, fmt.Sprintf("Expected HTTP error status code for %q but received %d", url+"?"+values.Encode(), code))
}
return isErrorCode
}
// HTTPBody is a helper that returns HTTP body of the response. It returns
// empty string if building a new request fails.
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string {
w := httptest.NewRecorder()
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
if err != nil {
return ""
}
handler(w, req)
return w.Body.String()
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// assert.HTTPBodyContains(t, myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if !contains {
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body))
}
return contains
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// assert.HTTPBodyNotContains(t, myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if contains {
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to NOT contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body))
}
return !contains
}

View file

@ -1,28 +0,0 @@
// Package require implements the same assertions as the `assert` package but
// stops test execution when a test fails.
//
// Example Usage
//
// The following is a complete example using require in a standard test function:
// import (
// "testing"
// "github.com/stretchr/testify/require"
// )
//
// func TestSomething(t *testing.T) {
//
// var a string = "Hello"
// var b string = "Hello"
//
// require.Equal(t, a, b, "The two words should be the same.")
//
// }
//
// Assertions
//
// The `require` package have same global functions as in the `assert` package,
// but instead of returning a boolean result they call `t.FailNow()`.
//
// Every assertion function also takes an optional string message as the final argument,
// allowing custom error messages to be appended to the message the assertion method outputs.
package require

View file

@ -1,16 +0,0 @@
package require
// Assertions provides assertion methods around the
// TestingT interface.
type Assertions struct {
t TestingT
}
// New makes a new Assertions object for the specified TestingT.
func New(t TestingT) *Assertions {
return &Assertions{
t: t,
}
}
//go:generate go run ../_codegen/main.go -output-package=require -template=require_forward.go.tmpl -include-format-funcs

File diff suppressed because it is too large Load diff

View file

@ -1,957 +0,0 @@
/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package require
import (
assert "github.com/stretchr/testify/assert"
http "net/http"
url "net/url"
time "time"
)
// Condition uses a Comparison to assert a complex condition.
func (a *Assertions) Condition(comp assert.Comparison, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Condition(a.t, comp, msgAndArgs...)
}
// Conditionf uses a Comparison to assert a complex condition.
func (a *Assertions) Conditionf(comp assert.Comparison, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Conditionf(a.t, comp, msg, args...)
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Contains("Hello World", "World")
// a.Contains(["Hello", "World"], "World")
// a.Contains({"Hello": "World"}, "Hello")
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Contains(a.t, s, contains, msgAndArgs...)
}
// Containsf asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Containsf("Hello World", "World", "error message %s", "formatted")
// a.Containsf(["Hello", "World"], "World", "error message %s", "formatted")
// a.Containsf({"Hello": "World"}, "Hello", "error message %s", "formatted")
func (a *Assertions) Containsf(s interface{}, contains interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Containsf(a.t, s, contains, msg, args...)
}
// DirExists checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func (a *Assertions) DirExists(path string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
DirExists(a.t, path, msgAndArgs...)
}
// DirExistsf checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func (a *Assertions) DirExistsf(path string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
DirExistsf(a.t, path, msg, args...)
}
// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// a.ElementsMatch([1, 3, 2, 3], [1, 3, 3, 2])
func (a *Assertions) ElementsMatch(listA interface{}, listB interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
ElementsMatch(a.t, listA, listB, msgAndArgs...)
}
// ElementsMatchf asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// a.ElementsMatchf([1, 3, 2, 3], [1, 3, 3, 2], "error message %s", "formatted")
func (a *Assertions) ElementsMatchf(listA interface{}, listB interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
ElementsMatchf(a.t, listA, listB, msg, args...)
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Empty(obj)
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Empty(a.t, object, msgAndArgs...)
}
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Emptyf(obj, "error message %s", "formatted")
func (a *Assertions) Emptyf(object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Emptyf(a.t, object, msg, args...)
}
// Equal asserts that two objects are equal.
//
// a.Equal(123, 123)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Equal(a.t, expected, actual, msgAndArgs...)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// a.EqualError(err, expectedErrorString)
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
EqualError(a.t, theError, errString, msgAndArgs...)
}
// EqualErrorf asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// a.EqualErrorf(err, expectedErrorString, "error message %s", "formatted")
func (a *Assertions) EqualErrorf(theError error, errString string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
EqualErrorf(a.t, theError, errString, msg, args...)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValues(uint32(123), int32(123))
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
EqualValues(a.t, expected, actual, msgAndArgs...)
}
// EqualValuesf asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValuesf(uint32(123, "error message %s", "formatted"), int32(123))
func (a *Assertions) EqualValuesf(expected interface{}, actual interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
EqualValuesf(a.t, expected, actual, msg, args...)
}
// Equalf asserts that two objects are equal.
//
// a.Equalf(123, 123, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func (a *Assertions) Equalf(expected interface{}, actual interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Equalf(a.t, expected, actual, msg, args...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Error(err) {
// assert.Equal(t, expectedError, err)
// }
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Error(a.t, err, msgAndArgs...)
}
// Errorf asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Errorf(err, "error message %s", "formatted") {
// assert.Equal(t, expectedErrorf, err)
// }
func (a *Assertions) Errorf(err error, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Errorf(a.t, err, msg, args...)
}
// Exactly asserts that two objects are equal in value and type.
//
// a.Exactly(int32(123), int64(123))
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Exactly(a.t, expected, actual, msgAndArgs...)
}
// Exactlyf asserts that two objects are equal in value and type.
//
// a.Exactlyf(int32(123, "error message %s", "formatted"), int64(123))
func (a *Assertions) Exactlyf(expected interface{}, actual interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Exactlyf(a.t, expected, actual, msg, args...)
}
// Fail reports a failure through
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Fail(a.t, failureMessage, msgAndArgs...)
}
// FailNow fails test
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
FailNow(a.t, failureMessage, msgAndArgs...)
}
// FailNowf fails test
func (a *Assertions) FailNowf(failureMessage string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
FailNowf(a.t, failureMessage, msg, args...)
}
// Failf reports a failure through
func (a *Assertions) Failf(failureMessage string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Failf(a.t, failureMessage, msg, args...)
}
// False asserts that the specified value is false.
//
// a.False(myBool)
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
False(a.t, value, msgAndArgs...)
}
// Falsef asserts that the specified value is false.
//
// a.Falsef(myBool, "error message %s", "formatted")
func (a *Assertions) Falsef(value bool, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Falsef(a.t, value, msg, args...)
}
// FileExists checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func (a *Assertions) FileExists(path string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
FileExists(a.t, path, msgAndArgs...)
}
// FileExistsf checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func (a *Assertions) FileExistsf(path string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
FileExistsf(a.t, path, msg, args...)
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContains(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPBodyContains(a.t, handler, method, url, values, str, msgAndArgs...)
}
// HTTPBodyContainsf asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContainsf(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPBodyContainsf(a.t, handler, method, url, values, str, msg, args...)
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContains(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPBodyNotContains(a.t, handler, method, url, values, str, msgAndArgs...)
}
// HTTPBodyNotContainsf asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContainsf(myHandler, "GET", "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPBodyNotContainsf(a.t, handler, method, url, values, str, msg, args...)
}
// HTTPError asserts that a specified handler returns an error status code.
//
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPError(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPErrorf asserts that a specified handler returns an error status code.
//
// a.HTTPErrorf(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func (a *Assertions) HTTPErrorf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPErrorf(a.t, handler, method, url, values, msg, args...)
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPRedirect(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirectf(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func (a *Assertions) HTTPRedirectf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPRedirectf(a.t, handler, method, url, values, msg, args...)
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPSuccess(a.t, handler, method, url, values, msgAndArgs...)
}
// HTTPSuccessf asserts that a specified handler returns a success status code.
//
// a.HTTPSuccessf(myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccessf(handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
HTTPSuccessf(a.t, handler, method, url, values, msg, args...)
}
// Implements asserts that an object is implemented by the specified interface.
//
// a.Implements((*MyInterface)(nil), new(MyObject))
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Implements(a.t, interfaceObject, object, msgAndArgs...)
}
// Implementsf asserts that an object is implemented by the specified interface.
//
// a.Implementsf((*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
func (a *Assertions) Implementsf(interfaceObject interface{}, object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Implementsf(a.t, interfaceObject, object, msg, args...)
}
// InDelta asserts that the two numerals are within delta of each other.
//
// a.InDelta(math.Pi, (22 / 7.0), 0.01)
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDelta(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func (a *Assertions) InDeltaMapValues(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDeltaMapValues(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaMapValuesf is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func (a *Assertions) InDeltaMapValuesf(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDeltaMapValuesf(a.t, expected, actual, delta, msg, args...)
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaSlicef is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlicef(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDeltaSlicef(a.t, expected, actual, delta, msg, args...)
}
// InDeltaf asserts that the two numerals are within delta of each other.
//
// a.InDeltaf(math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
func (a *Assertions) InDeltaf(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InDeltaf(a.t, expected, actual, delta, msg, args...)
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InEpsilonSlice(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
func (a *Assertions) InEpsilonSlicef(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InEpsilonSlicef(a.t, expected, actual, epsilon, msg, args...)
}
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
func (a *Assertions) InEpsilonf(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
InEpsilonf(a.t, expected, actual, epsilon, msg, args...)
}
// IsType asserts that the specified objects are of the same type.
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
IsType(a.t, expectedType, object, msgAndArgs...)
}
// IsTypef asserts that the specified objects are of the same type.
func (a *Assertions) IsTypef(expectedType interface{}, object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
IsTypef(a.t, expectedType, object, msg, args...)
}
// JSONEq asserts that two JSON strings are equivalent.
//
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
JSONEq(a.t, expected, actual, msgAndArgs...)
}
// JSONEqf asserts that two JSON strings are equivalent.
//
// a.JSONEqf(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
func (a *Assertions) JSONEqf(expected string, actual string, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
JSONEqf(a.t, expected, actual, msg, args...)
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// a.Len(mySlice, 3)
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Len(a.t, object, length, msgAndArgs...)
}
// Lenf asserts that the specified object has specific length.
// Lenf also fails if the object has a type that len() not accept.
//
// a.Lenf(mySlice, 3, "error message %s", "formatted")
func (a *Assertions) Lenf(object interface{}, length int, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Lenf(a.t, object, length, msg, args...)
}
// Nil asserts that the specified object is nil.
//
// a.Nil(err)
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Nil(a.t, object, msgAndArgs...)
}
// Nilf asserts that the specified object is nil.
//
// a.Nilf(err, "error message %s", "formatted")
func (a *Assertions) Nilf(object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Nilf(a.t, object, msg, args...)
}
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoError(err) {
// assert.Equal(t, expectedObj, actualObj)
// }
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NoError(a.t, err, msgAndArgs...)
}
// NoErrorf asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoErrorf(err, "error message %s", "formatted") {
// assert.Equal(t, expectedObj, actualObj)
// }
func (a *Assertions) NoErrorf(err error, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NoErrorf(a.t, err, msg, args...)
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContains("Hello World", "Earth")
// a.NotContains(["Hello", "World"], "Earth")
// a.NotContains({"Hello": "World"}, "Earth")
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotContains(a.t, s, contains, msgAndArgs...)
}
// NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContainsf("Hello World", "Earth", "error message %s", "formatted")
// a.NotContainsf(["Hello", "World"], "Earth", "error message %s", "formatted")
// a.NotContainsf({"Hello": "World"}, "Earth", "error message %s", "formatted")
func (a *Assertions) NotContainsf(s interface{}, contains interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotContainsf(a.t, s, contains, msg, args...)
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmpty(obj) {
// assert.Equal(t, "two", obj[1])
// }
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotEmpty(a.t, object, msgAndArgs...)
}
// NotEmptyf asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmptyf(obj, "error message %s", "formatted") {
// assert.Equal(t, "two", obj[1])
// }
func (a *Assertions) NotEmptyf(object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotEmptyf(a.t, object, msg, args...)
}
// NotEqual asserts that the specified values are NOT equal.
//
// a.NotEqual(obj1, obj2)
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotEqual(a.t, expected, actual, msgAndArgs...)
}
// NotEqualf asserts that the specified values are NOT equal.
//
// a.NotEqualf(obj1, obj2, "error message %s", "formatted")
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func (a *Assertions) NotEqualf(expected interface{}, actual interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotEqualf(a.t, expected, actual, msg, args...)
}
// NotNil asserts that the specified object is not nil.
//
// a.NotNil(err)
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotNil(a.t, object, msgAndArgs...)
}
// NotNilf asserts that the specified object is not nil.
//
// a.NotNilf(err, "error message %s", "formatted")
func (a *Assertions) NotNilf(object interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotNilf(a.t, object, msg, args...)
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanics(func(){ RemainCalm() })
func (a *Assertions) NotPanics(f assert.PanicTestFunc, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotPanics(a.t, f, msgAndArgs...)
}
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanicsf(func(){ RemainCalm() }, "error message %s", "formatted")
func (a *Assertions) NotPanicsf(f assert.PanicTestFunc, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotPanicsf(a.t, f, msg, args...)
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting")
// a.NotRegexp("^start", "it's not starting")
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotRegexp(a.t, rx, str, msgAndArgs...)
}
// NotRegexpf asserts that a specified regexp does not match a string.
//
// a.NotRegexpf(regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
// a.NotRegexpf("^start", "it's not starting", "error message %s", "formatted")
func (a *Assertions) NotRegexpf(rx interface{}, str interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotRegexpf(a.t, rx, str, msg, args...)
}
// NotSubset asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// a.NotSubset([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
func (a *Assertions) NotSubset(list interface{}, subset interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotSubset(a.t, list, subset, msgAndArgs...)
}
// NotSubsetf asserts that the specified list(array, slice...) contains not all
// elements given in the specified subset(array, slice...).
//
// a.NotSubsetf([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
func (a *Assertions) NotSubsetf(list interface{}, subset interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotSubsetf(a.t, list, subset, msg, args...)
}
// NotZero asserts that i is not the zero value for its type.
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotZero(a.t, i, msgAndArgs...)
}
// NotZerof asserts that i is not the zero value for its type.
func (a *Assertions) NotZerof(i interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
NotZerof(a.t, i, msg, args...)
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panics(func(){ GoCrazy() })
func (a *Assertions) Panics(f assert.PanicTestFunc, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Panics(a.t, f, msgAndArgs...)
}
// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// a.PanicsWithValue("crazy error", func(){ GoCrazy() })
func (a *Assertions) PanicsWithValue(expected interface{}, f assert.PanicTestFunc, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
PanicsWithValue(a.t, expected, f, msgAndArgs...)
}
// PanicsWithValuef asserts that the code inside the specified PanicTestFunc panics, and that
// the recovered panic value equals the expected panic value.
//
// a.PanicsWithValuef("crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
func (a *Assertions) PanicsWithValuef(expected interface{}, f assert.PanicTestFunc, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
PanicsWithValuef(a.t, expected, f, msg, args...)
}
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panicsf(func(){ GoCrazy() }, "error message %s", "formatted")
func (a *Assertions) Panicsf(f assert.PanicTestFunc, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Panicsf(a.t, f, msg, args...)
}
// Regexp asserts that a specified regexp matches a string.
//
// a.Regexp(regexp.MustCompile("start"), "it's starting")
// a.Regexp("start...$", "it's not starting")
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Regexp(a.t, rx, str, msgAndArgs...)
}
// Regexpf asserts that a specified regexp matches a string.
//
// a.Regexpf(regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
// a.Regexpf("start...$", "it's not starting", "error message %s", "formatted")
func (a *Assertions) Regexpf(rx interface{}, str interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Regexpf(a.t, rx, str, msg, args...)
}
// Subset asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// a.Subset([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
func (a *Assertions) Subset(list interface{}, subset interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Subset(a.t, list, subset, msgAndArgs...)
}
// Subsetf asserts that the specified list(array, slice...) contains all
// elements given in the specified subset(array, slice...).
//
// a.Subsetf([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
func (a *Assertions) Subsetf(list interface{}, subset interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Subsetf(a.t, list, subset, msg, args...)
}
// True asserts that the specified value is true.
//
// a.True(myBool)
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
True(a.t, value, msgAndArgs...)
}
// Truef asserts that the specified value is true.
//
// a.Truef(myBool, "error message %s", "formatted")
func (a *Assertions) Truef(value bool, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Truef(a.t, value, msg, args...)
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second)
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
}
// WithinDurationf asserts that the two times are within duration delta of each other.
//
// a.WithinDurationf(time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
func (a *Assertions) WithinDurationf(expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
WithinDurationf(a.t, expected, actual, delta, msg, args...)
}
// Zero asserts that i is the zero value for its type.
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Zero(a.t, i, msgAndArgs...)
}
// Zerof asserts that i is the zero value for its type.
func (a *Assertions) Zerof(i interface{}, msg string, args ...interface{}) {
if h, ok := a.t.(tHelper); ok {
h.Helper()
}
Zerof(a.t, i, msg, args...)
}

View file

@ -1,29 +0,0 @@
package require
// TestingT is an interface wrapper around *testing.T
type TestingT interface {
Errorf(format string, args ...interface{})
FailNow()
}
type tHelper interface {
Helper()
}
// ComparisonAssertionFunc is a common function prototype when comparing two values. Can be useful
// for table driven tests.
type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{})
// ValueAssertionFunc is a common function prototype when validating a single value. Can be useful
// for table driven tests.
type ValueAssertionFunc func(TestingT, interface{}, ...interface{})
// BoolAssertionFunc is a common function prototype when validating a bool value. Can be useful
// for table driven tests.
type BoolAssertionFunc func(TestingT, bool, ...interface{})
// ValuesAssertionFunc is a common function prototype when validating an error value. Can be useful
// for table driven tests.
type ErrorAssertionFunc func(TestingT, error, ...interface{})
//go:generate go run ../_codegen/main.go -output-package=require -template=require.go.tmpl -include-format-funcs

202
libnetwork/vendor/gotest.tools/LICENSE vendored Normal file
View file

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View file

@ -0,0 +1,31 @@
# gotest.tools
A collection of packages to augment `testing` and support common patterns.
[![GoDoc](https://godoc.org/gotest.tools?status.svg)](https://godoc.org/gotest.tools)
[![CircleCI](https://circleci.com/gh/gotestyourself/gotestyourself/tree/master.svg?style=shield)](https://circleci.com/gh/gotestyourself/gotestyourself/tree/master)
[![Go Reportcard](https://goreportcard.com/badge/gotest.tools)](https://goreportcard.com/report/gotest.tools)
## Packages
* [assert](http://godoc.org/gotest.tools/assert) -
compare values and fail the test when a comparison fails
* [env](http://godoc.org/gotest.tools/env) -
test code which uses environment variables
* [fs](http://godoc.org/gotest.tools/fs) -
create temporary files and compare a filesystem tree to an expected value
* [golden](http://godoc.org/gotest.tools/golden) -
compare large multi-line strings against values frozen in golden files
* [icmd](http://godoc.org/gotest.tools/icmd) -
execute binaries and test the output
* [poll](http://godoc.org/gotest.tools/poll) -
test asynchronous code by polling until a desired state is reached
* [skip](http://godoc.org/gotest.tools/skip) -
skip a test and print the source code of the condition used to skip the test
## Related
* [gotest.tools/gotestsum](https://github.com/gotestyourself/gotestsum) - go test runner with custom output
* [maxbrunsfeld/counterfeiter](https://github.com/maxbrunsfeld/counterfeiter) - generate fakes for interfaces
* [jonboulle/clockwork](https://github.com/jonboulle/clockwork) - a fake clock for testing code that uses `time`

View file

@ -0,0 +1,311 @@
/*Package assert provides assertions for comparing expected values to actual
values. When an assertion fails a helpful error message is printed.
Assert and Check
Assert() and Check() both accept a Comparison, and fail the test when the
comparison fails. The one difference is that Assert() will end the test execution
immediately (using t.FailNow()) whereas Check() will fail the test (using t.Fail()),
return the value of the comparison, then proceed with the rest of the test case.
Example usage
The example below shows assert used with some common types.
import (
"testing"
"gotest.tools/assert"
is "gotest.tools/assert/cmp"
)
func TestEverything(t *testing.T) {
// booleans
assert.Assert(t, ok)
assert.Assert(t, !missing)
// primitives
assert.Equal(t, count, 1)
assert.Equal(t, msg, "the message")
assert.Assert(t, total != 10) // NotEqual
// errors
assert.NilError(t, closer.Close())
assert.Error(t, err, "the exact error message")
assert.ErrorContains(t, err, "includes this")
assert.ErrorType(t, err, os.IsNotExist)
// complex types
assert.DeepEqual(t, result, myStruct{Name: "title"})
assert.Assert(t, is.Len(items, 3))
assert.Assert(t, len(sequence) != 0) // NotEmpty
assert.Assert(t, is.Contains(mapping, "key"))
// pointers and interface
assert.Assert(t, is.Nil(ref))
assert.Assert(t, ref != nil) // NotNil
}
Comparisons
Package https://godoc.org/gotest.tools/assert/cmp provides
many common comparisons. Additional comparisons can be written to compare
values in other ways. See the example Assert (CustomComparison).
Automated migration from testify
gty-migrate-from-testify is a binary which can update source code which uses
testify assertions to use the assertions provided by this package.
See http://bit.do/cmd-gty-migrate-from-testify.
*/
package assert // import "gotest.tools/assert"
import (
"fmt"
"go/ast"
"go/token"
gocmp "github.com/google/go-cmp/cmp"
"gotest.tools/assert/cmp"
"gotest.tools/internal/format"
"gotest.tools/internal/source"
)
// BoolOrComparison can be a bool, or cmp.Comparison. See Assert() for usage.
type BoolOrComparison interface{}
// TestingT is the subset of testing.T used by the assert package.
type TestingT interface {
FailNow()
Fail()
Log(args ...interface{})
}
type helperT interface {
Helper()
}
const failureMessage = "assertion failed: "
// nolint: gocyclo
func assert(
t TestingT,
failer func(),
argSelector argSelector,
comparison BoolOrComparison,
msgAndArgs ...interface{},
) bool {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
var success bool
switch check := comparison.(type) {
case bool:
if check {
return true
}
logFailureFromBool(t, msgAndArgs...)
// Undocumented legacy comparison without Result type
case func() (success bool, message string):
success = runCompareFunc(t, check, msgAndArgs...)
case nil:
return true
case error:
msg := "error is not nil: "
t.Log(format.WithCustomMessage(failureMessage+msg+check.Error(), msgAndArgs...))
case cmp.Comparison:
success = runComparison(t, argSelector, check, msgAndArgs...)
case func() cmp.Result:
success = runComparison(t, argSelector, check, msgAndArgs...)
default:
t.Log(fmt.Sprintf("invalid Comparison: %v (%T)", check, check))
}
if success {
return true
}
failer()
return false
}
func runCompareFunc(
t TestingT,
f func() (success bool, message string),
msgAndArgs ...interface{},
) bool {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
if success, message := f(); !success {
t.Log(format.WithCustomMessage(failureMessage+message, msgAndArgs...))
return false
}
return true
}
func logFailureFromBool(t TestingT, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
const stackIndex = 3 // Assert()/Check(), assert(), formatFailureFromBool()
const comparisonArgPos = 1
args, err := source.CallExprArgs(stackIndex)
if err != nil {
t.Log(err.Error())
return
}
msg, err := boolFailureMessage(args[comparisonArgPos])
if err != nil {
t.Log(err.Error())
msg = "expression is false"
}
t.Log(format.WithCustomMessage(failureMessage+msg, msgAndArgs...))
}
func boolFailureMessage(expr ast.Expr) (string, error) {
if binaryExpr, ok := expr.(*ast.BinaryExpr); ok && binaryExpr.Op == token.NEQ {
x, err := source.FormatNode(binaryExpr.X)
if err != nil {
return "", err
}
y, err := source.FormatNode(binaryExpr.Y)
if err != nil {
return "", err
}
return x + " is " + y, nil
}
if unaryExpr, ok := expr.(*ast.UnaryExpr); ok && unaryExpr.Op == token.NOT {
x, err := source.FormatNode(unaryExpr.X)
if err != nil {
return "", err
}
return x + " is true", nil
}
formatted, err := source.FormatNode(expr)
if err != nil {
return "", err
}
return "expression is false: " + formatted, nil
}
// Assert performs a comparison. If the comparison fails the test is marked as
// failed, a failure message is logged, and execution is stopped immediately.
//
// The comparison argument may be one of three types: bool, cmp.Comparison or
// error.
// When called with a bool the failure message will contain the literal source
// code of the expression.
// When called with a cmp.Comparison the comparison is responsible for producing
// a helpful failure message.
// When called with an error a nil value is considered success. A non-nil error
// is a failure, and Error() is used as the failure message.
func Assert(t TestingT, comparison BoolOrComparison, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsFromComparisonCall, comparison, msgAndArgs...)
}
// Check performs a comparison. If the comparison fails the test is marked as
// failed, a failure message is logged, and Check returns false. Otherwise returns
// true.
//
// See Assert for details about the comparison arg and failure messages.
func Check(t TestingT, comparison BoolOrComparison, msgAndArgs ...interface{}) bool {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
return assert(t, t.Fail, argsFromComparisonCall, comparison, msgAndArgs...)
}
// NilError fails the test immediately if err is not nil.
// This is equivalent to Assert(t, err)
func NilError(t TestingT, err error, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, err, msgAndArgs...)
}
// Equal uses the == operator to assert two values are equal and fails the test
// if they are not equal.
//
// If the comparison fails Equal will use the variable names for x and y as part
// of the failure message to identify the actual and expected values.
//
// If either x or y are a multi-line string the failure message will include a
// unified diff of the two values. If the values only differ by whitespace
// the unified diff will be augmented by replacing whitespace characters with
// visible characters to identify the whitespace difference.
//
// This is equivalent to Assert(t, cmp.Equal(x, y)).
func Equal(t TestingT, x, y interface{}, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, cmp.Equal(x, y), msgAndArgs...)
}
// DeepEqual uses google/go-cmp (http://bit.do/go-cmp) to assert two values are
// equal and fails the test if they are not equal.
//
// Package https://godoc.org/gotest.tools/assert/opt provides some additional
// commonly used Options.
//
// This is equivalent to Assert(t, cmp.DeepEqual(x, y)).
func DeepEqual(t TestingT, x, y interface{}, opts ...gocmp.Option) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, cmp.DeepEqual(x, y, opts...))
}
// Error fails the test if err is nil, or the error message is not the expected
// message.
// Equivalent to Assert(t, cmp.Error(err, message)).
func Error(t TestingT, err error, message string, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, cmp.Error(err, message), msgAndArgs...)
}
// ErrorContains fails the test if err is nil, or the error message does not
// contain the expected substring.
// Equivalent to Assert(t, cmp.ErrorContains(err, substring)).
func ErrorContains(t TestingT, err error, substring string, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, cmp.ErrorContains(err, substring), msgAndArgs...)
}
// ErrorType fails the test if err is nil, or err is not the expected type.
//
// Expected can be one of:
// a func(error) bool which returns true if the error is the expected type,
// an instance of (or a pointer to) a struct of the expected type,
// a pointer to an interface the error is expected to implement,
// a reflect.Type of the expected struct or interface.
//
// Equivalent to Assert(t, cmp.ErrorType(err, expected)).
func ErrorType(t TestingT, err error, expected interface{}, msgAndArgs ...interface{}) {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
assert(t, t.FailNow, argsAfterT, cmp.ErrorType(err, expected), msgAndArgs...)
}

View file

@ -0,0 +1,312 @@
/*Package cmp provides Comparisons for Assert and Check*/
package cmp // import "gotest.tools/assert/cmp"
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp"
"gotest.tools/internal/format"
)
// Comparison is a function which compares values and returns ResultSuccess if
// the actual value matches the expected value. If the values do not match the
// Result will contain a message about why it failed.
type Comparison func() Result
// DeepEqual compares two values using google/go-cmp (http://bit.do/go-cmp)
// and succeeds if the values are equal.
//
// The comparison can be customized using comparison Options.
// Package https://godoc.org/gotest.tools/assert/opt provides some additional
// commonly used Options.
func DeepEqual(x, y interface{}, opts ...cmp.Option) Comparison {
return func() (result Result) {
defer func() {
if panicmsg, handled := handleCmpPanic(recover()); handled {
result = ResultFailure(panicmsg)
}
}()
diff := cmp.Diff(x, y, opts...)
if diff == "" {
return ResultSuccess
}
return multiLineDiffResult(diff)
}
}
func handleCmpPanic(r interface{}) (string, bool) {
if r == nil {
return "", false
}
panicmsg, ok := r.(string)
if !ok {
panic(r)
}
switch {
case strings.HasPrefix(panicmsg, "cannot handle unexported field"):
return panicmsg, true
}
panic(r)
}
func toResult(success bool, msg string) Result {
if success {
return ResultSuccess
}
return ResultFailure(msg)
}
// Equal succeeds if x == y. See assert.Equal for full documentation.
func Equal(x, y interface{}) Comparison {
return func() Result {
switch {
case x == y:
return ResultSuccess
case isMultiLineStringCompare(x, y):
diff := format.UnifiedDiff(format.DiffConfig{A: x.(string), B: y.(string)})
return multiLineDiffResult(diff)
}
return ResultFailureTemplate(`
{{- .Data.x}} (
{{- with callArg 0 }}{{ formatNode . }} {{end -}}
{{- printf "%T" .Data.x -}}
) != {{ .Data.y}} (
{{- with callArg 1 }}{{ formatNode . }} {{end -}}
{{- printf "%T" .Data.y -}}
)`,
map[string]interface{}{"x": x, "y": y})
}
}
func isMultiLineStringCompare(x, y interface{}) bool {
strX, ok := x.(string)
if !ok {
return false
}
strY, ok := y.(string)
if !ok {
return false
}
return strings.Contains(strX, "\n") || strings.Contains(strY, "\n")
}
func multiLineDiffResult(diff string) Result {
return ResultFailureTemplate(`
--- {{ with callArg 0 }}{{ formatNode . }}{{else}}{{end}}
+++ {{ with callArg 1 }}{{ formatNode . }}{{else}}{{end}}
{{ .Data.diff }}`,
map[string]interface{}{"diff": diff})
}
// Len succeeds if the sequence has the expected length.
func Len(seq interface{}, expected int) Comparison {
return func() (result Result) {
defer func() {
if e := recover(); e != nil {
result = ResultFailure(fmt.Sprintf("type %T does not have a length", seq))
}
}()
value := reflect.ValueOf(seq)
length := value.Len()
if length == expected {
return ResultSuccess
}
msg := fmt.Sprintf("expected %s (length %d) to have length %d", seq, length, expected)
return ResultFailure(msg)
}
}
// Contains succeeds if item is in collection. Collection may be a string, map,
// slice, or array.
//
// If collection is a string, item must also be a string, and is compared using
// strings.Contains().
// If collection is a Map, contains will succeed if item is a key in the map.
// If collection is a slice or array, item is compared to each item in the
// sequence using reflect.DeepEqual().
func Contains(collection interface{}, item interface{}) Comparison {
return func() Result {
colValue := reflect.ValueOf(collection)
if !colValue.IsValid() {
return ResultFailure(fmt.Sprintf("nil does not contain items"))
}
msg := fmt.Sprintf("%v does not contain %v", collection, item)
itemValue := reflect.ValueOf(item)
switch colValue.Type().Kind() {
case reflect.String:
if itemValue.Type().Kind() != reflect.String {
return ResultFailure("string may only contain strings")
}
return toResult(
strings.Contains(colValue.String(), itemValue.String()),
fmt.Sprintf("string %q does not contain %q", collection, item))
case reflect.Map:
if itemValue.Type() != colValue.Type().Key() {
return ResultFailure(fmt.Sprintf(
"%v can not contain a %v key", colValue.Type(), itemValue.Type()))
}
return toResult(colValue.MapIndex(itemValue).IsValid(), msg)
case reflect.Slice, reflect.Array:
for i := 0; i < colValue.Len(); i++ {
if reflect.DeepEqual(colValue.Index(i).Interface(), item) {
return ResultSuccess
}
}
return ResultFailure(msg)
default:
return ResultFailure(fmt.Sprintf("type %T does not contain items", collection))
}
}
}
// Panics succeeds if f() panics.
func Panics(f func()) Comparison {
return func() (result Result) {
defer func() {
if err := recover(); err != nil {
result = ResultSuccess
}
}()
f()
return ResultFailure("did not panic")
}
}
// Error succeeds if err is a non-nil error, and the error message equals the
// expected message.
func Error(err error, message string) Comparison {
return func() Result {
switch {
case err == nil:
return ResultFailure("expected an error, got nil")
case err.Error() != message:
return ResultFailure(fmt.Sprintf(
"expected error %q, got %+v", message, err))
}
return ResultSuccess
}
}
// ErrorContains succeeds if err is a non-nil error, and the error message contains
// the expected substring.
func ErrorContains(err error, substring string) Comparison {
return func() Result {
switch {
case err == nil:
return ResultFailure("expected an error, got nil")
case !strings.Contains(err.Error(), substring):
return ResultFailure(fmt.Sprintf(
"expected error to contain %q, got %+v", substring, err))
}
return ResultSuccess
}
}
// Nil succeeds if obj is a nil interface, pointer, or function.
//
// Use NilError() for comparing errors. Use Len(obj, 0) for comparing slices,
// maps, and channels.
func Nil(obj interface{}) Comparison {
msgFunc := func(value reflect.Value) string {
return fmt.Sprintf("%v (type %s) is not nil", reflect.Indirect(value), value.Type())
}
return isNil(obj, msgFunc)
}
func isNil(obj interface{}, msgFunc func(reflect.Value) string) Comparison {
return func() Result {
if obj == nil {
return ResultSuccess
}
value := reflect.ValueOf(obj)
kind := value.Type().Kind()
if kind >= reflect.Chan && kind <= reflect.Slice {
if value.IsNil() {
return ResultSuccess
}
return ResultFailure(msgFunc(value))
}
return ResultFailure(fmt.Sprintf("%v (type %s) can not be nil", value, value.Type()))
}
}
// ErrorType succeeds if err is not nil and is of the expected type.
//
// Expected can be one of:
// a func(error) bool which returns true if the error is the expected type,
// an instance of (or a pointer to) a struct of the expected type,
// a pointer to an interface the error is expected to implement,
// a reflect.Type of the expected struct or interface.
func ErrorType(err error, expected interface{}) Comparison {
return func() Result {
switch expectedType := expected.(type) {
case func(error) bool:
return cmpErrorTypeFunc(err, expectedType)
case reflect.Type:
if expectedType.Kind() == reflect.Interface {
return cmpErrorTypeImplementsType(err, expectedType)
}
return cmpErrorTypeEqualType(err, expectedType)
case nil:
return ResultFailure(fmt.Sprintf("invalid type for expected: nil"))
}
expectedType := reflect.TypeOf(expected)
switch {
case expectedType.Kind() == reflect.Struct, isPtrToStruct(expectedType):
return cmpErrorTypeEqualType(err, expectedType)
case isPtrToInterface(expectedType):
return cmpErrorTypeImplementsType(err, expectedType.Elem())
}
return ResultFailure(fmt.Sprintf("invalid type for expected: %T", expected))
}
}
func cmpErrorTypeFunc(err error, f func(error) bool) Result {
if f(err) {
return ResultSuccess
}
actual := "nil"
if err != nil {
actual = fmt.Sprintf("%s (%T)", err, err)
}
return ResultFailureTemplate(`error is {{ .Data.actual }}
{{- with callArg 1 }}, not {{ formatNode . }}{{end -}}`,
map[string]interface{}{"actual": actual})
}
func cmpErrorTypeEqualType(err error, expectedType reflect.Type) Result {
if err == nil {
return ResultFailure(fmt.Sprintf("error is nil, not %s", expectedType))
}
errValue := reflect.ValueOf(err)
if errValue.Type() == expectedType {
return ResultSuccess
}
return ResultFailure(fmt.Sprintf("error is %s (%T), not %s", err, err, expectedType))
}
func cmpErrorTypeImplementsType(err error, expectedType reflect.Type) Result {
if err == nil {
return ResultFailure(fmt.Sprintf("error is nil, not %s", expectedType))
}
errValue := reflect.ValueOf(err)
if errValue.Type().Implements(expectedType) {
return ResultSuccess
}
return ResultFailure(fmt.Sprintf("error is %s (%T), not %s", err, err, expectedType))
}
func isPtrToInterface(typ reflect.Type) bool {
return typ.Kind() == reflect.Ptr && typ.Elem().Kind() == reflect.Interface
}
func isPtrToStruct(typ reflect.Type) bool {
return typ.Kind() == reflect.Ptr && typ.Elem().Kind() == reflect.Struct
}

View file

@ -0,0 +1,94 @@
package cmp
import (
"bytes"
"fmt"
"go/ast"
"text/template"
"gotest.tools/internal/source"
)
// Result of a Comparison.
type Result interface {
Success() bool
}
type result struct {
success bool
message string
}
func (r result) Success() bool {
return r.success
}
func (r result) FailureMessage() string {
return r.message
}
// ResultSuccess is a constant which is returned by a ComparisonWithResult to
// indicate success.
var ResultSuccess = result{success: true}
// ResultFailure returns a failed Result with a failure message.
func ResultFailure(message string) Result {
return result{message: message}
}
// ResultFromError returns ResultSuccess if err is nil. Otherwise ResultFailure
// is returned with the error message as the failure message.
func ResultFromError(err error) Result {
if err == nil {
return ResultSuccess
}
return ResultFailure(err.Error())
}
type templatedResult struct {
success bool
template string
data map[string]interface{}
}
func (r templatedResult) Success() bool {
return r.success
}
func (r templatedResult) FailureMessage(args []ast.Expr) string {
msg, err := renderMessage(r, args)
if err != nil {
return fmt.Sprintf("failed to render failure message: %s", err)
}
return msg
}
// ResultFailureTemplate returns a Result with a template string and data which
// can be used to format a failure message. The template may access data from .Data,
// the comparison args with the callArg function, and the formatNode function may
// be used to format the call args.
func ResultFailureTemplate(template string, data map[string]interface{}) Result {
return templatedResult{template: template, data: data}
}
func renderMessage(result templatedResult, args []ast.Expr) (string, error) {
tmpl := template.New("failure").Funcs(template.FuncMap{
"formatNode": source.FormatNode,
"callArg": func(index int) ast.Expr {
if index >= len(args) {
return nil
}
return args[index]
},
})
var err error
tmpl, err = tmpl.Parse(result.template)
if err != nil {
return "", err
}
buf := new(bytes.Buffer)
err = tmpl.Execute(buf, map[string]interface{}{
"Data": result.data,
})
return buf.String(), err
}

View file

@ -0,0 +1,107 @@
package assert
import (
"fmt"
"go/ast"
"gotest.tools/assert/cmp"
"gotest.tools/internal/format"
"gotest.tools/internal/source"
)
func runComparison(
t TestingT,
argSelector argSelector,
f cmp.Comparison,
msgAndArgs ...interface{},
) bool {
if ht, ok := t.(helperT); ok {
ht.Helper()
}
result := f()
if result.Success() {
return true
}
var message string
switch typed := result.(type) {
case resultWithComparisonArgs:
const stackIndex = 3 // Assert/Check, assert, runComparison
args, err := source.CallExprArgs(stackIndex)
if err != nil {
t.Log(err.Error())
}
message = typed.FailureMessage(filterPrintableExpr(argSelector(args)))
case resultBasic:
message = typed.FailureMessage()
default:
message = fmt.Sprintf("comparison returned invalid Result type: %T", result)
}
t.Log(format.WithCustomMessage(failureMessage+message, msgAndArgs...))
return false
}
type resultWithComparisonArgs interface {
FailureMessage(args []ast.Expr) string
}
type resultBasic interface {
FailureMessage() string
}
// filterPrintableExpr filters the ast.Expr slice to only include Expr that are
// easy to read when printed and contain relevant information to an assertion.
//
// Ident and SelectorExpr are included because they print nicely and the variable
// names may provide additional context to their values.
// BasicLit and CompositeLit are excluded because their source is equivalent to
// their value, which is already available.
// Other types are ignored for now, but could be added if they are relevant.
func filterPrintableExpr(args []ast.Expr) []ast.Expr {
result := make([]ast.Expr, len(args))
for i, arg := range args {
if isShortPrintableExpr(arg) {
result[i] = arg
continue
}
if starExpr, ok := arg.(*ast.StarExpr); ok {
result[i] = starExpr.X
continue
}
result[i] = nil
}
return result
}
func isShortPrintableExpr(expr ast.Expr) bool {
switch expr.(type) {
case *ast.Ident, *ast.SelectorExpr, *ast.IndexExpr, *ast.SliceExpr:
return true
case *ast.BinaryExpr, *ast.UnaryExpr:
return true
default:
// CallExpr, ParenExpr, TypeAssertExpr, KeyValueExpr, StarExpr
return false
}
}
type argSelector func([]ast.Expr) []ast.Expr
func argsAfterT(args []ast.Expr) []ast.Expr {
if len(args) < 1 {
return nil
}
return args[1:]
}
func argsFromComparisonCall(args []ast.Expr) []ast.Expr {
if len(args) < 1 {
return nil
}
if callExpr, ok := args[1].(*ast.CallExpr); ok {
return callExpr.Args
}
return nil
}

View file

@ -1,27 +1,10 @@
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package difflib
/* Package difflib is a partial port of Python difflib module.
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
)
Original source: https://github.com/pmezard/go-difflib
This file is trimmed to only the parts used by this repository.
*/
package difflib // import "gotest.tools/internal/difflib"
func min(a, b int) int {
if a < b {
@ -37,13 +20,6 @@ func max(a, b int) int {
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
type Match struct {
A int
B int
@ -103,14 +79,6 @@ func NewMatcher(a, b []string) *SequenceMatcher {
return &m
}
func NewMatcherWithJunk(a, b []string, autoJunk bool,
isJunk func(string) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b []string) {
m.SetSeq1(a)
@ -450,323 +418,3 @@ func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound
if m.fullBCount == nil {
m.fullBCount = map[string]int{}
for _, s := range m.b {
m.fullBCount[s] = m.fullBCount[s] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[string]int{}
matches := 0
for _, s := range m.a {
n, ok := avail[s]
if !ok {
n = m.fullBCount[s]
}
avail[s] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
// Unified diff parameters
type UnifiedDiff struct {
A []string // First sequence lines
FromFile string // First file name
FromDate string // First file time
B []string // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol string // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
wf := func(format string, args ...interface{}) error {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
return err
}
ws := func(s string) error {
_, err := buf.WriteString(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(" " + line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws("-" + line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws("+" + line); err != nil {
return err
}
}
}
}
}
return nil
}
// Like WriteUnifiedDiff but returns the diff a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return string(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return fmt.Sprintf("%d", beginning)
}
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s string) {
_, err := buf.WriteString(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
prefix := map[byte]string{
'i': "+ ",
'd': "- ",
'r': "! ",
'e': " ",
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
}
first, last := g[0], g[len(g)-1]
ws("***************" + diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a string.
func GetContextDiffString(diff ContextDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return string(w.Bytes()), err
}
// Split a string on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s string) []string {
lines := strings.SplitAfter(s, "\n")
lines[len(lines)-1] += "\n"
return lines
}

View file

@ -0,0 +1,161 @@
package format
import (
"bytes"
"fmt"
"strings"
"unicode"
"gotest.tools/internal/difflib"
)
const (
contextLines = 2
)
// DiffConfig for a unified diff
type DiffConfig struct {
A string
B string
From string
To string
}
// UnifiedDiff is a modified version of difflib.WriteUnifiedDiff with better
// support for showing the whitespace differences.
func UnifiedDiff(conf DiffConfig) string {
a := strings.SplitAfter(conf.A, "\n")
b := strings.SplitAfter(conf.B, "\n")
groups := difflib.NewMatcher(a, b).GetGroupedOpCodes(contextLines)
if len(groups) == 0 {
return ""
}
buf := new(bytes.Buffer)
writeFormat := func(format string, args ...interface{}) {
buf.WriteString(fmt.Sprintf(format, args...))
}
writeLine := func(prefix string, s string) {
buf.WriteString(prefix + s)
}
if hasWhitespaceDiffLines(groups, a, b) {
writeLine = visibleWhitespaceLine(writeLine)
}
formatHeader(writeFormat, conf)
for _, group := range groups {
formatRangeLine(writeFormat, group)
for _, opCode := range group {
in, out := a[opCode.I1:opCode.I2], b[opCode.J1:opCode.J2]
switch opCode.Tag {
case 'e':
formatLines(writeLine, " ", in)
case 'r':
formatLines(writeLine, "-", in)
formatLines(writeLine, "+", out)
case 'd':
formatLines(writeLine, "-", in)
case 'i':
formatLines(writeLine, "+", out)
}
}
}
return buf.String()
}
// hasWhitespaceDiffLines returns true if any diff groups is only different
// because of whitespace characters.
func hasWhitespaceDiffLines(groups [][]difflib.OpCode, a, b []string) bool {
for _, group := range groups {
in, out := new(bytes.Buffer), new(bytes.Buffer)
for _, opCode := range group {
if opCode.Tag == 'e' {
continue
}
for _, line := range a[opCode.I1:opCode.I2] {
in.WriteString(line)
}
for _, line := range b[opCode.J1:opCode.J2] {
out.WriteString(line)
}
}
if removeWhitespace(in.String()) == removeWhitespace(out.String()) {
return true
}
}
return false
}
func removeWhitespace(s string) string {
var result []rune
for _, r := range s {
if !unicode.IsSpace(r) {
result = append(result, r)
}
}
return string(result)
}
func visibleWhitespaceLine(ws func(string, string)) func(string, string) {
mapToVisibleSpace := func(r rune) rune {
switch r {
case '\n':
case ' ':
return '·'
case '\t':
return '▷'
case '\v':
return '▽'
case '\r':
return '↵'
case '\f':
return '↓'
default:
if unicode.IsSpace(r) {
return '<27>'
}
}
return r
}
return func(prefix, s string) {
ws(prefix, strings.Map(mapToVisibleSpace, s))
}
}
func formatHeader(wf func(string, ...interface{}), conf DiffConfig) {
if conf.From != "" || conf.To != "" {
wf("--- %s\n", conf.From)
wf("+++ %s\n", conf.To)
}
}
func formatRangeLine(wf func(string, ...interface{}), group []difflib.OpCode) {
first, last := group[0], group[len(group)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
wf("@@ -%s +%s @@\n", range1, range2)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning-- // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
func formatLines(writeLine func(string, string), prefix string, lines []string) {
for _, line := range lines {
writeLine(prefix, line)
}
// Add a newline if the last line is missing one so that the diff displays
// properly.
if !strings.HasSuffix(lines[len(lines)-1], "\n") {
writeLine("", "\n")
}
}

View file

@ -0,0 +1,27 @@
package format // import "gotest.tools/internal/format"
import "fmt"
// Message accepts a msgAndArgs varargs and formats it using fmt.Sprintf
func Message(msgAndArgs ...interface{}) string {
switch len(msgAndArgs) {
case 0:
return ""
case 1:
return fmt.Sprintf("%v", msgAndArgs[0])
default:
return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
}
}
// WithCustomMessage accepts one or two messages and formats them appropriately
func WithCustomMessage(source string, msgAndArgs ...interface{}) string {
custom := Message(msgAndArgs...)
switch {
case custom == "":
return source
case source == "":
return custom
}
return fmt.Sprintf("%s: %s", source, custom)
}

View file

@ -0,0 +1,163 @@
package source // import "gotest.tools/internal/source"
import (
"bytes"
"fmt"
"go/ast"
"go/format"
"go/parser"
"go/token"
"os"
"runtime"
"strconv"
"strings"
"github.com/pkg/errors"
)
const baseStackIndex = 1
// FormattedCallExprArg returns the argument from an ast.CallExpr at the
// index in the call stack. The argument is formatted using FormatNode.
func FormattedCallExprArg(stackIndex int, argPos int) (string, error) {
args, err := CallExprArgs(stackIndex + 1)
if err != nil {
return "", err
}
return FormatNode(args[argPos])
}
func getNodeAtLine(filename string, lineNum int) (ast.Node, error) {
fileset := token.NewFileSet()
astFile, err := parser.ParseFile(fileset, filename, nil, parser.AllErrors)
if err != nil {
return nil, errors.Wrapf(err, "failed to parse source file: %s", filename)
}
node := scanToLine(fileset, astFile, lineNum)
if node == nil {
return nil, errors.Errorf(
"failed to find an expression on line %d in %s", lineNum, filename)
}
return node, nil
}
func scanToLine(fileset *token.FileSet, node ast.Node, lineNum int) ast.Node {
v := &scanToLineVisitor{lineNum: lineNum, fileset: fileset}
ast.Walk(v, node)
return v.matchedNode
}
type scanToLineVisitor struct {
lineNum int
matchedNode ast.Node
fileset *token.FileSet
}
func (v *scanToLineVisitor) Visit(node ast.Node) ast.Visitor {
if node == nil || v.matchedNode != nil {
return nil
}
if v.nodePosition(node).Line == v.lineNum {
v.matchedNode = node
return nil
}
return v
}
// In golang 1.9 the line number changed from being the line where the statement
// ended to the line where the statement began.
func (v *scanToLineVisitor) nodePosition(node ast.Node) token.Position {
if goVersionBefore19 {
return v.fileset.Position(node.End())
}
return v.fileset.Position(node.Pos())
}
var goVersionBefore19 = isGOVersionBefore19()
func isGOVersionBefore19() bool {
version := runtime.Version()
// not a release version
if !strings.HasPrefix(version, "go") {
return false
}
version = strings.TrimPrefix(version, "go")
parts := strings.Split(version, ".")
if len(parts) < 2 {
return false
}
minor, err := strconv.ParseInt(parts[1], 10, 32)
return err == nil && parts[0] == "1" && minor < 9
}
func getCallExprArgs(node ast.Node) ([]ast.Expr, error) {
visitor := &callExprVisitor{}
ast.Walk(visitor, node)
if visitor.expr == nil {
return nil, errors.New("failed to find call expression")
}
return visitor.expr.Args, nil
}
type callExprVisitor struct {
expr *ast.CallExpr
}
func (v *callExprVisitor) Visit(node ast.Node) ast.Visitor {
if v.expr != nil || node == nil {
return nil
}
debug("visit (%T): %s", node, debugFormatNode{node})
if callExpr, ok := node.(*ast.CallExpr); ok {
v.expr = callExpr
return nil
}
return v
}
// FormatNode using go/format.Node and return the result as a string
func FormatNode(node ast.Node) (string, error) {
buf := new(bytes.Buffer)
err := format.Node(buf, token.NewFileSet(), node)
return buf.String(), err
}
// CallExprArgs returns the ast.Expr slice for the args of an ast.CallExpr at
// the index in the call stack.
func CallExprArgs(stackIndex int) ([]ast.Expr, error) {
_, filename, lineNum, ok := runtime.Caller(baseStackIndex + stackIndex)
if !ok {
return nil, errors.New("failed to get call stack")
}
debug("call stack position: %s:%d", filename, lineNum)
node, err := getNodeAtLine(filename, lineNum)
if err != nil {
return nil, err
}
debug("found node (%T): %s", node, debugFormatNode{node})
return getCallExprArgs(node)
}
var debugEnabled = os.Getenv("GOTESTYOURSELF_DEBUG") != ""
func debug(format string, args ...interface{}) {
if debugEnabled {
fmt.Fprintf(os.Stderr, "DEBUG: "+format+"\n", args...)
}
}
type debugFormatNode struct {
ast.Node
}
func (n debugFormatNode) String() string {
out, err := FormatNode(n.Node)
if err != nil {
return fmt.Sprintf("failed to format %s: %s", n.Node, err)
}
return out
}