ladybird/Userland/Libraries/LibGL/SoftwareRasterizer.cpp
Stephan Unverwerth e8f66f821c LibGL: Add depth tests and writes to SoftwareRasterizer
Tests against and writes to the depth buffer when GL_DEPTH_TEST is
enabled via glEnable(). Currently fragment z is always compared against
existing depth with GL_LESS.
2021-05-09 15:58:35 +02:00

270 lines
10 KiB
C++

/*
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SoftwareRasterizer.h"
#include <AK/Function.h>
#include <LibGfx/Painter.h>
namespace GL {
static constexpr size_t RASTERIZER_BLOCK_SIZE = 16;
struct FloatVector2 {
float x;
float y;
};
constexpr static float triangle_area(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
{
return ((c.x - a.x) * (b.y - a.y) - (c.y - a.y) * (b.x - a.x)) / 2;
}
template<typename T>
constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector4& barycentric_coords)
{
return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
}
static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
{
auto clamped = v.clamped(0, 1);
u8 r = clamped.x() * 255;
u8 g = clamped.y() * 255;
u8 b = clamped.z() * 255;
u8 a = clamped.w() * 255;
return a << 24 | b << 16 | g << 8 | r;
}
template<typename PS>
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
{
// Since the algorithm is based on blocks of uniform size, we need
// to ensure that our render_target size is actually a multiple of the block size
VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
// Calculate area of the triangle for later tests
FloatVector2 v0 = { triangle.vertices[0].x, triangle.vertices[0].y };
FloatVector2 v1 = { triangle.vertices[1].x, triangle.vertices[1].y };
FloatVector2 v2 = { triangle.vertices[2].x, triangle.vertices[2].y };
float area = triangle_area(v0, v1, v2);
if (area == 0)
return;
float one_over_area = 1 / area;
// Obey top-left rule:
// This sets up "zero" for later pixel coverage tests.
// Depending on where on the triangle the edge is located
// it is either tested against 0 or float epsilon, effectively
// turning "< 0" into "<= 0"
float constexpr epsilon = AK::NumericLimits<float>::epsilon();
FloatVector4 zero { epsilon, epsilon, epsilon, 0.0f };
if (v1.y > v0.y || (v1.y == v0.y && v1.x < v0.x))
zero.set_z(0);
if (v2.y > v1.y || (v2.y == v1.y && v2.x < v1.x))
zero.set_x(0);
if (v0.y > v2.y || (v0.y == v2.y && v0.x < v2.x))
zero.set_y(0);
// This function calculates the barycentric coordinates for the pixel relative to the triangle.
auto barycentric_coordinates = [v0, v1, v2, one_over_area](float x, float y) -> FloatVector4 {
FloatVector2 p { x, y };
return {
triangle_area(v1, v2, p) * one_over_area,
triangle_area(v2, v0, p) * one_over_area,
triangle_area(v0, v1, p) * one_over_area,
0.0f
};
};
// This function tests whether a point lies within the triangle
auto test_point = [zero](const FloatVector4& point) -> bool {
return point.x() >= zero.x()
&& point.y() >= zero.y()
&& point.z() >= zero.z();
};
// Calculate bounds
FloatVector2 min { AK::min(v0.x, AK::min(v1.x, v2.x)), AK::min(v0.y, AK::min(v1.y, v2.y)) };
FloatVector2 max { AK::max(v0.x, AK::max(v1.x, v2.x)), AK::max(v0.y, AK::max(v1.y, v2.y)) };
// Calculate block-based bounds
int iminx = floorf(min.x);
int iminy = floorf(min.y);
int imaxx = ceilf(max.x);
int imaxy = ceilf(max.y);
iminx = clamp(iminx, 0, render_target.width() - 1);
imaxx = clamp(imaxx, 0, render_target.width() - 1);
iminy = clamp(iminy, 0, render_target.height() - 1);
imaxy = clamp(imaxy, 0, render_target.height() - 1);
int bx0 = iminx / RASTERIZER_BLOCK_SIZE;
int bx1 = imaxx / RASTERIZER_BLOCK_SIZE + 1;
int by0 = iminy / RASTERIZER_BLOCK_SIZE;
int by1 = imaxy / RASTERIZER_BLOCK_SIZE + 1;
// Iterate over all blocks within the bounds of the triangle
for (int by = by0; by < by1; by++) {
for (int bx = bx0; bx < bx1; bx++) {
// The 4 block corners
int x0 = bx * RASTERIZER_BLOCK_SIZE;
int y0 = by * RASTERIZER_BLOCK_SIZE;
int x1 = bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
int y1 = by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
// Barycentric coordinates of the 4 block corners
auto a = barycentric_coordinates(x0, y0);
auto b = barycentric_coordinates(x1, y0);
auto c = barycentric_coordinates(x0, y1);
auto d = barycentric_coordinates(x1, y1);
// If the whole block is outside any of the triangle edges we can discard it completely
if ((a.x() < zero.x() && b.x() < zero.x() && c.x() < zero.x() && d.x() < zero.x())
|| (a.y() < zero.y() && b.y() < zero.y() && c.y() < zero.y() && d.y() < zero.y())
|| (a.z() < zero.z() && b.z() < zero.z() && c.z() < zero.z() && d.z() < zero.z()))
continue;
// barycentric coordinate derivatives
auto dcdx = (b - a) / RASTERIZER_BLOCK_SIZE;
auto dcdy = (c - a) / RASTERIZER_BLOCK_SIZE;
if (test_point(a) && test_point(b) && test_point(c) && test_point(d)) {
// The block is fully contained within the triangle
// Fill the block without further coverage tests
for (int y = y0; y < y1; y++) {
auto coords = a;
auto* pixel = &render_target.scanline(y)[x0];
auto* depth = &depth_buffer.scanline(y)[x0];
for (int x = x0; x < x1; x++) {
if (options.enable_depth_test) {
float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
if (z < *depth) {
*pixel = to_rgba32(pixel_shader(coords, triangle));
*depth = z;
}
} else {
*pixel = to_rgba32(pixel_shader(coords, triangle));
}
pixel++;
depth++;
coords = coords + dcdx;
}
a = a + dcdy;
}
} else {
// The block overlaps at least one triangle edge
// We need to test coverage of every pixel within the block
for (int y = y0; y < y1; y++) {
auto coords = a;
auto* pixel = &render_target.scanline(y)[x0];
auto* depth = &depth_buffer.scanline(y)[x0];
for (int x = x0; x < x1; x++) {
if (test_point(coords)) {
if (options.enable_depth_test) {
float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
if (z < *depth) {
*pixel = to_rgba32(pixel_shader(coords, triangle));
*depth = z;
}
} else {
*pixel = to_rgba32(pixel_shader(coords, triangle));
}
}
pixel++;
depth++;
coords = coords + dcdx;
}
a = a + dcdy;
}
}
}
}
}
static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
{
int width = ((min_size.width() + step - 1) / step) * step;
int height = ((min_size.height() + step - 1) / step) * step;
return { width, height };
}
SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
: m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
{
}
void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle)
{
if (m_options.shade_smooth) {
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4& v, const GLTriangle& t) -> FloatVector4 {
const float r = t.vertices[0].r * v.x() + t.vertices[1].r * v.y() + t.vertices[2].r * v.z();
const float g = t.vertices[0].g * v.x() + t.vertices[1].g * v.y() + t.vertices[2].g * v.z();
const float b = t.vertices[0].b * v.x() + t.vertices[1].b * v.y() + t.vertices[2].b * v.z();
const float a = t.vertices[0].a * v.x() + t.vertices[1].a * v.y() + t.vertices[2].a * v.z();
return { r, g, b, a };
});
} else {
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4&, const GLTriangle& t) -> FloatVector4 {
return { t.vertices[0].r, t.vertices[0].g, t.vertices[0].b, t.vertices[0].a };
});
}
}
void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
{
wait_for_all_threads();
m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
}
void SoftwareRasterizer::clear_color(const FloatVector4& color)
{
wait_for_all_threads();
uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
m_render_target->fill(Gfx::Color(r, g, b, a));
}
void SoftwareRasterizer::clear_depth(float depth)
{
wait_for_all_threads();
m_depth_buffer->clear(depth);
}
void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
{
wait_for_all_threads();
Gfx::Painter painter { target };
painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
}
void SoftwareRasterizer::wait_for_all_threads() const
{
// FIXME: Wait for all render threads to finish when multithreading is being implemented
}
void SoftwareRasterizer::set_options(const RasterizerOptions& options)
{
wait_for_all_threads();
m_options = options;
// FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
}
}