
Tests against and writes to the depth buffer when GL_DEPTH_TEST is enabled via glEnable(). Currently fragment z is always compared against existing depth with GL_LESS.
270 lines
10 KiB
C++
270 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "SoftwareRasterizer.h"
|
|
#include <AK/Function.h>
|
|
#include <LibGfx/Painter.h>
|
|
|
|
namespace GL {
|
|
|
|
static constexpr size_t RASTERIZER_BLOCK_SIZE = 16;
|
|
|
|
struct FloatVector2 {
|
|
float x;
|
|
float y;
|
|
};
|
|
|
|
constexpr static float triangle_area(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
|
|
{
|
|
return ((c.x - a.x) * (b.y - a.y) - (c.y - a.y) * (b.x - a.x)) / 2;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector4& barycentric_coords)
|
|
{
|
|
return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
|
|
}
|
|
|
|
static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
|
|
{
|
|
auto clamped = v.clamped(0, 1);
|
|
u8 r = clamped.x() * 255;
|
|
u8 g = clamped.y() * 255;
|
|
u8 b = clamped.z() * 255;
|
|
u8 a = clamped.w() * 255;
|
|
return a << 24 | b << 16 | g << 8 | r;
|
|
}
|
|
|
|
template<typename PS>
|
|
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
|
|
{
|
|
// Since the algorithm is based on blocks of uniform size, we need
|
|
// to ensure that our render_target size is actually a multiple of the block size
|
|
VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
|
|
VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
|
|
|
|
// Calculate area of the triangle for later tests
|
|
FloatVector2 v0 = { triangle.vertices[0].x, triangle.vertices[0].y };
|
|
FloatVector2 v1 = { triangle.vertices[1].x, triangle.vertices[1].y };
|
|
FloatVector2 v2 = { triangle.vertices[2].x, triangle.vertices[2].y };
|
|
|
|
float area = triangle_area(v0, v1, v2);
|
|
if (area == 0)
|
|
return;
|
|
|
|
float one_over_area = 1 / area;
|
|
|
|
// Obey top-left rule:
|
|
// This sets up "zero" for later pixel coverage tests.
|
|
// Depending on where on the triangle the edge is located
|
|
// it is either tested against 0 or float epsilon, effectively
|
|
// turning "< 0" into "<= 0"
|
|
float constexpr epsilon = AK::NumericLimits<float>::epsilon();
|
|
FloatVector4 zero { epsilon, epsilon, epsilon, 0.0f };
|
|
if (v1.y > v0.y || (v1.y == v0.y && v1.x < v0.x))
|
|
zero.set_z(0);
|
|
if (v2.y > v1.y || (v2.y == v1.y && v2.x < v1.x))
|
|
zero.set_x(0);
|
|
if (v0.y > v2.y || (v0.y == v2.y && v0.x < v2.x))
|
|
zero.set_y(0);
|
|
|
|
// This function calculates the barycentric coordinates for the pixel relative to the triangle.
|
|
auto barycentric_coordinates = [v0, v1, v2, one_over_area](float x, float y) -> FloatVector4 {
|
|
FloatVector2 p { x, y };
|
|
return {
|
|
triangle_area(v1, v2, p) * one_over_area,
|
|
triangle_area(v2, v0, p) * one_over_area,
|
|
triangle_area(v0, v1, p) * one_over_area,
|
|
0.0f
|
|
};
|
|
};
|
|
|
|
// This function tests whether a point lies within the triangle
|
|
auto test_point = [zero](const FloatVector4& point) -> bool {
|
|
return point.x() >= zero.x()
|
|
&& point.y() >= zero.y()
|
|
&& point.z() >= zero.z();
|
|
};
|
|
|
|
// Calculate bounds
|
|
FloatVector2 min { AK::min(v0.x, AK::min(v1.x, v2.x)), AK::min(v0.y, AK::min(v1.y, v2.y)) };
|
|
FloatVector2 max { AK::max(v0.x, AK::max(v1.x, v2.x)), AK::max(v0.y, AK::max(v1.y, v2.y)) };
|
|
|
|
// Calculate block-based bounds
|
|
int iminx = floorf(min.x);
|
|
int iminy = floorf(min.y);
|
|
int imaxx = ceilf(max.x);
|
|
int imaxy = ceilf(max.y);
|
|
|
|
iminx = clamp(iminx, 0, render_target.width() - 1);
|
|
imaxx = clamp(imaxx, 0, render_target.width() - 1);
|
|
iminy = clamp(iminy, 0, render_target.height() - 1);
|
|
imaxy = clamp(imaxy, 0, render_target.height() - 1);
|
|
|
|
int bx0 = iminx / RASTERIZER_BLOCK_SIZE;
|
|
int bx1 = imaxx / RASTERIZER_BLOCK_SIZE + 1;
|
|
int by0 = iminy / RASTERIZER_BLOCK_SIZE;
|
|
int by1 = imaxy / RASTERIZER_BLOCK_SIZE + 1;
|
|
|
|
// Iterate over all blocks within the bounds of the triangle
|
|
for (int by = by0; by < by1; by++) {
|
|
for (int bx = bx0; bx < bx1; bx++) {
|
|
|
|
// The 4 block corners
|
|
int x0 = bx * RASTERIZER_BLOCK_SIZE;
|
|
int y0 = by * RASTERIZER_BLOCK_SIZE;
|
|
int x1 = bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
|
|
int y1 = by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
|
|
|
|
// Barycentric coordinates of the 4 block corners
|
|
auto a = barycentric_coordinates(x0, y0);
|
|
auto b = barycentric_coordinates(x1, y0);
|
|
auto c = barycentric_coordinates(x0, y1);
|
|
auto d = barycentric_coordinates(x1, y1);
|
|
|
|
// If the whole block is outside any of the triangle edges we can discard it completely
|
|
if ((a.x() < zero.x() && b.x() < zero.x() && c.x() < zero.x() && d.x() < zero.x())
|
|
|| (a.y() < zero.y() && b.y() < zero.y() && c.y() < zero.y() && d.y() < zero.y())
|
|
|| (a.z() < zero.z() && b.z() < zero.z() && c.z() < zero.z() && d.z() < zero.z()))
|
|
continue;
|
|
|
|
// barycentric coordinate derivatives
|
|
auto dcdx = (b - a) / RASTERIZER_BLOCK_SIZE;
|
|
auto dcdy = (c - a) / RASTERIZER_BLOCK_SIZE;
|
|
|
|
if (test_point(a) && test_point(b) && test_point(c) && test_point(d)) {
|
|
// The block is fully contained within the triangle
|
|
// Fill the block without further coverage tests
|
|
for (int y = y0; y < y1; y++) {
|
|
auto coords = a;
|
|
auto* pixel = &render_target.scanline(y)[x0];
|
|
auto* depth = &depth_buffer.scanline(y)[x0];
|
|
for (int x = x0; x < x1; x++) {
|
|
if (options.enable_depth_test) {
|
|
float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
|
|
if (z < *depth) {
|
|
*pixel = to_rgba32(pixel_shader(coords, triangle));
|
|
*depth = z;
|
|
}
|
|
} else {
|
|
*pixel = to_rgba32(pixel_shader(coords, triangle));
|
|
}
|
|
pixel++;
|
|
depth++;
|
|
coords = coords + dcdx;
|
|
}
|
|
a = a + dcdy;
|
|
}
|
|
} else {
|
|
// The block overlaps at least one triangle edge
|
|
// We need to test coverage of every pixel within the block
|
|
for (int y = y0; y < y1; y++) {
|
|
auto coords = a;
|
|
auto* pixel = &render_target.scanline(y)[x0];
|
|
auto* depth = &depth_buffer.scanline(y)[x0];
|
|
for (int x = x0; x < x1; x++) {
|
|
if (test_point(coords)) {
|
|
if (options.enable_depth_test) {
|
|
float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
|
|
if (z < *depth) {
|
|
*pixel = to_rgba32(pixel_shader(coords, triangle));
|
|
*depth = z;
|
|
}
|
|
} else {
|
|
*pixel = to_rgba32(pixel_shader(coords, triangle));
|
|
}
|
|
}
|
|
pixel++;
|
|
depth++;
|
|
coords = coords + dcdx;
|
|
}
|
|
a = a + dcdy;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
|
|
{
|
|
int width = ((min_size.width() + step - 1) / step) * step;
|
|
int height = ((min_size.height() + step - 1) / step) * step;
|
|
return { width, height };
|
|
}
|
|
|
|
SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
|
|
: m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
|
|
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
|
|
{
|
|
}
|
|
|
|
void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle)
|
|
{
|
|
if (m_options.shade_smooth) {
|
|
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4& v, const GLTriangle& t) -> FloatVector4 {
|
|
const float r = t.vertices[0].r * v.x() + t.vertices[1].r * v.y() + t.vertices[2].r * v.z();
|
|
const float g = t.vertices[0].g * v.x() + t.vertices[1].g * v.y() + t.vertices[2].g * v.z();
|
|
const float b = t.vertices[0].b * v.x() + t.vertices[1].b * v.y() + t.vertices[2].b * v.z();
|
|
const float a = t.vertices[0].a * v.x() + t.vertices[1].a * v.y() + t.vertices[2].a * v.z();
|
|
return { r, g, b, a };
|
|
});
|
|
} else {
|
|
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4&, const GLTriangle& t) -> FloatVector4 {
|
|
return { t.vertices[0].r, t.vertices[0].g, t.vertices[0].b, t.vertices[0].a };
|
|
});
|
|
}
|
|
}
|
|
|
|
void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
|
|
m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
|
|
}
|
|
|
|
void SoftwareRasterizer::clear_color(const FloatVector4& color)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
|
|
uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
|
|
uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
|
|
uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
|
|
|
|
m_render_target->fill(Gfx::Color(r, g, b, a));
|
|
}
|
|
|
|
void SoftwareRasterizer::clear_depth(float depth)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_depth_buffer->clear(depth);
|
|
}
|
|
|
|
void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
Gfx::Painter painter { target };
|
|
painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
|
|
}
|
|
|
|
void SoftwareRasterizer::wait_for_all_threads() const
|
|
{
|
|
// FIXME: Wait for all render threads to finish when multithreading is being implemented
|
|
}
|
|
|
|
void SoftwareRasterizer::set_options(const RasterizerOptions& options)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_options = options;
|
|
|
|
// FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
|
|
}
|
|
|
|
}
|