/* * Copyright (c) 2021, Stephan Unverwerth * * SPDX-License-Identifier: BSD-2-Clause */ #include "SoftwareRasterizer.h" #include #include namespace GL { static constexpr size_t RASTERIZER_BLOCK_SIZE = 16; struct FloatVector2 { float x; float y; }; constexpr static float triangle_area(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c) { return ((c.x - a.x) * (b.y - a.y) - (c.y - a.y) * (b.x - a.x)) / 2; } template constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector4& barycentric_coords) { return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z(); } static Gfx::RGBA32 to_rgba32(const FloatVector4& v) { auto clamped = v.clamped(0, 1); u8 r = clamped.x() * 255; u8 g = clamped.y() * 255; u8 b = clamped.z() * 255; u8 a = clamped.w() * 255; return a << 24 | b << 16 | g << 8 | r; } template static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader) { // Since the algorithm is based on blocks of uniform size, we need // to ensure that our render_target size is actually a multiple of the block size VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0); VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0); // Calculate area of the triangle for later tests FloatVector2 v0 = { triangle.vertices[0].x, triangle.vertices[0].y }; FloatVector2 v1 = { triangle.vertices[1].x, triangle.vertices[1].y }; FloatVector2 v2 = { triangle.vertices[2].x, triangle.vertices[2].y }; float area = triangle_area(v0, v1, v2); if (area == 0) return; float one_over_area = 1 / area; // Obey top-left rule: // This sets up "zero" for later pixel coverage tests. // Depending on where on the triangle the edge is located // it is either tested against 0 or float epsilon, effectively // turning "< 0" into "<= 0" float constexpr epsilon = AK::NumericLimits::epsilon(); FloatVector4 zero { epsilon, epsilon, epsilon, 0.0f }; if (v1.y > v0.y || (v1.y == v0.y && v1.x < v0.x)) zero.set_z(0); if (v2.y > v1.y || (v2.y == v1.y && v2.x < v1.x)) zero.set_x(0); if (v0.y > v2.y || (v0.y == v2.y && v0.x < v2.x)) zero.set_y(0); // This function calculates the barycentric coordinates for the pixel relative to the triangle. auto barycentric_coordinates = [v0, v1, v2, one_over_area](float x, float y) -> FloatVector4 { FloatVector2 p { x, y }; return { triangle_area(v1, v2, p) * one_over_area, triangle_area(v2, v0, p) * one_over_area, triangle_area(v0, v1, p) * one_over_area, 0.0f }; }; // This function tests whether a point lies within the triangle auto test_point = [zero](const FloatVector4& point) -> bool { return point.x() >= zero.x() && point.y() >= zero.y() && point.z() >= zero.z(); }; // Calculate bounds FloatVector2 min { AK::min(v0.x, AK::min(v1.x, v2.x)), AK::min(v0.y, AK::min(v1.y, v2.y)) }; FloatVector2 max { AK::max(v0.x, AK::max(v1.x, v2.x)), AK::max(v0.y, AK::max(v1.y, v2.y)) }; // Calculate block-based bounds int iminx = floorf(min.x); int iminy = floorf(min.y); int imaxx = ceilf(max.x); int imaxy = ceilf(max.y); iminx = clamp(iminx, 0, render_target.width() - 1); imaxx = clamp(imaxx, 0, render_target.width() - 1); iminy = clamp(iminy, 0, render_target.height() - 1); imaxy = clamp(imaxy, 0, render_target.height() - 1); int bx0 = iminx / RASTERIZER_BLOCK_SIZE; int bx1 = imaxx / RASTERIZER_BLOCK_SIZE + 1; int by0 = iminy / RASTERIZER_BLOCK_SIZE; int by1 = imaxy / RASTERIZER_BLOCK_SIZE + 1; // Iterate over all blocks within the bounds of the triangle for (int by = by0; by < by1; by++) { for (int bx = bx0; bx < bx1; bx++) { // The 4 block corners int x0 = bx * RASTERIZER_BLOCK_SIZE; int y0 = by * RASTERIZER_BLOCK_SIZE; int x1 = bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE; int y1 = by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE; // Barycentric coordinates of the 4 block corners auto a = barycentric_coordinates(x0, y0); auto b = barycentric_coordinates(x1, y0); auto c = barycentric_coordinates(x0, y1); auto d = barycentric_coordinates(x1, y1); // If the whole block is outside any of the triangle edges we can discard it completely if ((a.x() < zero.x() && b.x() < zero.x() && c.x() < zero.x() && d.x() < zero.x()) || (a.y() < zero.y() && b.y() < zero.y() && c.y() < zero.y() && d.y() < zero.y()) || (a.z() < zero.z() && b.z() < zero.z() && c.z() < zero.z() && d.z() < zero.z())) continue; // barycentric coordinate derivatives auto dcdx = (b - a) / RASTERIZER_BLOCK_SIZE; auto dcdy = (c - a) / RASTERIZER_BLOCK_SIZE; if (test_point(a) && test_point(b) && test_point(c) && test_point(d)) { // The block is fully contained within the triangle // Fill the block without further coverage tests for (int y = y0; y < y1; y++) { auto coords = a; auto* pixel = &render_target.scanline(y)[x0]; auto* depth = &depth_buffer.scanline(y)[x0]; for (int x = x0; x < x1; x++) { if (options.enable_depth_test) { float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords); if (z < *depth) { *pixel = to_rgba32(pixel_shader(coords, triangle)); *depth = z; } } else { *pixel = to_rgba32(pixel_shader(coords, triangle)); } pixel++; depth++; coords = coords + dcdx; } a = a + dcdy; } } else { // The block overlaps at least one triangle edge // We need to test coverage of every pixel within the block for (int y = y0; y < y1; y++) { auto coords = a; auto* pixel = &render_target.scanline(y)[x0]; auto* depth = &depth_buffer.scanline(y)[x0]; for (int x = x0; x < x1; x++) { if (test_point(coords)) { if (options.enable_depth_test) { float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords); if (z < *depth) { *pixel = to_rgba32(pixel_shader(coords, triangle)); *depth = z; } } else { *pixel = to_rgba32(pixel_shader(coords, triangle)); } } pixel++; depth++; coords = coords + dcdx; } a = a + dcdy; } } } } } static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step) { int width = ((min_size.width() + step - 1) / step) * step; int height = ((min_size.height() + step - 1) / step) * step; return { width, height }; } SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size) : m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) } , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) } { } void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle) { if (m_options.shade_smooth) { rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4& v, const GLTriangle& t) -> FloatVector4 { const float r = t.vertices[0].r * v.x() + t.vertices[1].r * v.y() + t.vertices[2].r * v.z(); const float g = t.vertices[0].g * v.x() + t.vertices[1].g * v.y() + t.vertices[2].g * v.z(); const float b = t.vertices[0].b * v.x() + t.vertices[1].b * v.y() + t.vertices[2].b * v.z(); const float a = t.vertices[0].a * v.x() + t.vertices[1].a * v.y() + t.vertices[2].a * v.z(); return { r, g, b, a }; }); } else { rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4&, const GLTriangle& t) -> FloatVector4 { return { t.vertices[0].r, t.vertices[0].g, t.vertices[0].b, t.vertices[0].a }; }); } } void SoftwareRasterizer::resize(const Gfx::IntSize& min_size) { wait_for_all_threads(); m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)); m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size())); } void SoftwareRasterizer::clear_color(const FloatVector4& color) { wait_for_all_threads(); uint8_t r = static_cast(clamp(color.x(), 0.0f, 1.0f) * 255); uint8_t g = static_cast(clamp(color.y(), 0.0f, 1.0f) * 255); uint8_t b = static_cast(clamp(color.z(), 0.0f, 1.0f) * 255); uint8_t a = static_cast(clamp(color.w(), 0.0f, 1.0f) * 255); m_render_target->fill(Gfx::Color(r, g, b, a)); } void SoftwareRasterizer::clear_depth(float depth) { wait_for_all_threads(); m_depth_buffer->clear(depth); } void SoftwareRasterizer::blit_to(Gfx::Bitmap& target) { wait_for_all_threads(); Gfx::Painter painter { target }; painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false); } void SoftwareRasterizer::wait_for_all_threads() const { // FIXME: Wait for all render threads to finish when multithreading is being implemented } void SoftwareRasterizer::set_options(const RasterizerOptions& options) { wait_for_all_threads(); m_options = options; // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented } }