
The spec version of canonical_numeric_index_string is absurdly complex, and ends up converting from a string to a number, and then back again which is both slow and also requires a few allocations and a string compare. Instead this patch moves away from using Values to represent canonical a canonical index. In most cases all we need to know is whether a PropertyKey is an integer between 0 and 2^^32-2, which we already compute when we construct a PropertyKey so the existing is_number() check is sufficient. The more expensive case is handling strings containing numbers that don't roundtrip through string conversion. In most cases these turn into regular string properties, but for TypedArray access these property names are not treated as normal named properties. TypedArrays treat these numeric properties as magic indexes that are ignored on read and are not stored (but are evaluated) on assignment. For that reason there's now a mode flag on canonical_numeric_index_string so that only TypedArrays take the cost of the ToString round trip test. In order to improve the performance of this path this patch includes some early returns to avoid conversion in cases where we can quickly know whether a property can round trip.
163 lines
7.9 KiB
C++
163 lines
7.9 KiB
C++
/*
|
||
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#pragma once
|
||
|
||
#include <AK/Forward.h>
|
||
#include <LibCrypto/Forward.h>
|
||
#include <LibJS/AST.h>
|
||
#include <LibJS/Forward.h>
|
||
#include <LibJS/Heap/MarkedVector.h>
|
||
#include <LibJS/Runtime/CanonicalIndex.h>
|
||
#include <LibJS/Runtime/FunctionObject.h>
|
||
#include <LibJS/Runtime/GlobalObject.h>
|
||
#include <LibJS/Runtime/PrivateEnvironment.h>
|
||
#include <LibJS/Runtime/Value.h>
|
||
|
||
namespace JS {
|
||
|
||
DeclarativeEnvironment* new_declarative_environment(Environment&);
|
||
ObjectEnvironment* new_object_environment(Object&, bool is_with_environment, Environment*);
|
||
FunctionEnvironment* new_function_environment(ECMAScriptFunctionObject&, Object* new_target);
|
||
PrivateEnvironment* new_private_environment(VM& vm, PrivateEnvironment* outer);
|
||
Environment& get_this_environment(VM&);
|
||
Object* get_super_constructor(VM&);
|
||
ThrowCompletionOr<Reference> make_super_property_reference(GlobalObject&, Value actual_this, PropertyKey const&, bool strict);
|
||
ThrowCompletionOr<Value> require_object_coercible(GlobalObject&, Value);
|
||
ThrowCompletionOr<Value> call_impl(GlobalObject&, Value function, Value this_value, Optional<MarkedVector<Value>> = {});
|
||
ThrowCompletionOr<Value> call_impl(GlobalObject&, FunctionObject& function, Value this_value, Optional<MarkedVector<Value>> = {});
|
||
ThrowCompletionOr<Object*> construct_impl(GlobalObject&, FunctionObject&, Optional<MarkedVector<Value>> = {}, FunctionObject* new_target = nullptr);
|
||
ThrowCompletionOr<size_t> length_of_array_like(GlobalObject&, Object const&);
|
||
ThrowCompletionOr<MarkedVector<Value>> create_list_from_array_like(GlobalObject&, Value, Function<ThrowCompletionOr<void>(Value)> = {});
|
||
ThrowCompletionOr<FunctionObject*> species_constructor(GlobalObject&, Object const&, FunctionObject& default_constructor);
|
||
ThrowCompletionOr<Realm*> get_function_realm(GlobalObject&, FunctionObject const&);
|
||
ThrowCompletionOr<void> initialize_bound_name(GlobalObject&, FlyString const&, Value, Environment*);
|
||
bool is_compatible_property_descriptor(bool extensible, PropertyDescriptor const&, Optional<PropertyDescriptor> const& current);
|
||
bool validate_and_apply_property_descriptor(Object*, PropertyKey const&, bool extensible, PropertyDescriptor const&, Optional<PropertyDescriptor> const& current);
|
||
ThrowCompletionOr<Object*> get_prototype_from_constructor(GlobalObject&, FunctionObject const& constructor, Object* (GlobalObject::*intrinsic_default_prototype)());
|
||
Object* create_unmapped_arguments_object(GlobalObject&, Span<Value> arguments);
|
||
Object* create_mapped_arguments_object(GlobalObject&, FunctionObject&, Vector<FunctionNode::Parameter> const&, Span<Value> arguments, Environment&);
|
||
|
||
enum class CanonicalIndexMode {
|
||
DetectNumericRoundtrip,
|
||
IgnoreNumericRoundtrip,
|
||
};
|
||
CanonicalIndex canonical_numeric_index_string(PropertyKey const&, CanonicalIndexMode needs_numeric);
|
||
ThrowCompletionOr<String> get_substitution(GlobalObject&, Utf16View const& matched, Utf16View const& str, size_t position, Span<Value> captures, Value named_captures, Value replacement);
|
||
|
||
enum class CallerMode {
|
||
Strict,
|
||
NonStrict
|
||
};
|
||
enum class EvalMode {
|
||
Direct,
|
||
Indirect
|
||
};
|
||
ThrowCompletionOr<Value> perform_eval(Value, GlobalObject&, CallerMode, EvalMode);
|
||
|
||
ThrowCompletionOr<void> eval_declaration_instantiation(VM& vm, GlobalObject& global_object, Program const& program, Environment* variable_environment, Environment* lexical_environment, PrivateEnvironment* private_environment, bool strict);
|
||
|
||
// 7.3.14 Call ( F, V [ , argumentsList ] ), https://tc39.es/ecma262/#sec-call
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, Value function, Value this_value, MarkedVector<Value> arguments_list)
|
||
{
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, Value function, Value this_value, Optional<MarkedVector<Value>> arguments_list)
|
||
{
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
template<typename... Args>
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, Value function, Value this_value, Args&&... args)
|
||
{
|
||
if constexpr (sizeof...(Args) > 0) {
|
||
MarkedVector<Value> arguments_list { global_object.heap() };
|
||
(..., arguments_list.append(forward<Args>(args)));
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
return call_impl(global_object, function, this_value);
|
||
}
|
||
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, FunctionObject& function, Value this_value, MarkedVector<Value> arguments_list)
|
||
{
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, FunctionObject& function, Value this_value, Optional<MarkedVector<Value>> arguments_list)
|
||
{
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
template<typename... Args>
|
||
ALWAYS_INLINE ThrowCompletionOr<Value> call(GlobalObject& global_object, FunctionObject& function, Value this_value, Args&&... args)
|
||
{
|
||
if constexpr (sizeof...(Args) > 0) {
|
||
MarkedVector<Value> arguments_list { global_object.heap() };
|
||
(..., arguments_list.append(forward<Args>(args)));
|
||
return call_impl(global_object, function, this_value, move(arguments_list));
|
||
}
|
||
|
||
return call_impl(global_object, function, this_value);
|
||
}
|
||
|
||
// 7.3.15 Construct ( F [ , argumentsList [ , newTarget ] ] ), https://tc39.es/ecma262/#sec-construct
|
||
template<typename... Args>
|
||
ALWAYS_INLINE ThrowCompletionOr<Object*> construct(GlobalObject& global_object, FunctionObject& function, Args&&... args)
|
||
{
|
||
if constexpr (sizeof...(Args) > 0) {
|
||
MarkedVector<Value> arguments_list { global_object.heap() };
|
||
(..., arguments_list.append(forward<Args>(args)));
|
||
return construct_impl(global_object, function, move(arguments_list));
|
||
}
|
||
|
||
return construct_impl(global_object, function);
|
||
}
|
||
|
||
ALWAYS_INLINE ThrowCompletionOr<Object*> construct(GlobalObject& global_object, FunctionObject& function, MarkedVector<Value> arguments_list, FunctionObject* new_target = nullptr)
|
||
{
|
||
return construct_impl(global_object, function, move(arguments_list), new_target);
|
||
}
|
||
|
||
ALWAYS_INLINE ThrowCompletionOr<Object*> construct(GlobalObject& global_object, FunctionObject& function, Optional<MarkedVector<Value>> arguments_list, FunctionObject* new_target = nullptr)
|
||
{
|
||
return construct_impl(global_object, function, move(arguments_list), new_target);
|
||
}
|
||
|
||
// 10.1.13 OrdinaryCreateFromConstructor ( constructor, intrinsicDefaultProto [ , internalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinarycreatefromconstructor
|
||
template<typename T, typename... Args>
|
||
ThrowCompletionOr<T*> ordinary_create_from_constructor(GlobalObject& global_object, FunctionObject const& constructor, Object* (GlobalObject::*intrinsic_default_prototype)(), Args&&... args)
|
||
{
|
||
auto* prototype = TRY(get_prototype_from_constructor(global_object, constructor, intrinsic_default_prototype));
|
||
return global_object.heap().allocate<T>(global_object, forward<Args>(args)..., *prototype);
|
||
}
|
||
|
||
// x modulo y, https://tc39.es/ecma262/#eqn-modulo
|
||
template<typename T, typename U>
|
||
auto modulo(T x, U y) requires(IsArithmetic<T>, IsArithmetic<U>)
|
||
{
|
||
// The notation “x modulo y” (y must be finite and non-zero) computes a value k of the same sign as y (or zero) such that abs(k) < abs(y) and x - k = q × y for some integer q.
|
||
VERIFY(y != 0);
|
||
if constexpr (IsFloatingPoint<T> || IsFloatingPoint<U>) {
|
||
if constexpr (IsFloatingPoint<U>)
|
||
VERIFY(isfinite(y));
|
||
return fmod(fmod(x, y) + y, y);
|
||
} else {
|
||
return ((x % y) + y) % y;
|
||
}
|
||
}
|
||
|
||
auto modulo(Crypto::BigInteger auto const& x, Crypto::BigInteger auto const& y)
|
||
{
|
||
VERIFY(y != "0"_bigint);
|
||
auto result = x.divided_by(y).remainder;
|
||
if (result.is_negative())
|
||
result = result.plus(y);
|
||
return result;
|
||
}
|
||
|
||
}
|