
"Frame" is an MPEG term, which is not only unintuitive but also overloaded with different meaning by other codecs (e.g. FLAC). Therefore, use the standard term Sample for the central audio structure. The class is also extracted to its own file, because it's becoming quite large. Bundling these two changes means not distributing similar modifications (changing names and paths) across commits. Co-authored-by: kleines Filmröllchen <malu.bertsch@gmail.com>
860 lines
31 KiB
C++
860 lines
31 KiB
C++
/*
|
|
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "FlacLoader.h"
|
|
#include "Buffer.h"
|
|
#include <AK/BitStream.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/FlyString.h>
|
|
#include <AK/Format.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/Stream.h>
|
|
#include <AK/String.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <LibCore/File.h>
|
|
#include <LibCore/FileStream.h>
|
|
|
|
namespace Audio {
|
|
|
|
FlacLoaderPlugin::FlacLoaderPlugin(const StringView& path)
|
|
: m_file(Core::File::construct(path))
|
|
{
|
|
if (!m_file->open(Core::OpenMode::ReadOnly)) {
|
|
m_error_string = String::formatted("Can't open file: {}", m_file->error_string());
|
|
return;
|
|
}
|
|
|
|
m_stream = make<FlacInputStream>(Core::InputFileStream(*m_file));
|
|
if (!m_stream) {
|
|
m_error_string = String::formatted("Can't open memory stream");
|
|
return;
|
|
}
|
|
|
|
m_valid = parse_header();
|
|
if (!m_valid)
|
|
return;
|
|
reset();
|
|
if (!m_valid)
|
|
return;
|
|
}
|
|
|
|
FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer)
|
|
{
|
|
m_stream = make<FlacInputStream>(InputMemoryStream(buffer));
|
|
if (!m_stream) {
|
|
m_error_string = String::formatted("Can't open memory stream");
|
|
return;
|
|
}
|
|
|
|
m_valid = parse_header();
|
|
if (!m_valid)
|
|
return;
|
|
reset();
|
|
if (!m_valid)
|
|
return;
|
|
}
|
|
|
|
bool FlacLoaderPlugin::sniff()
|
|
{
|
|
return m_valid;
|
|
}
|
|
|
|
bool FlacLoaderPlugin::parse_header()
|
|
{
|
|
bool ok = true;
|
|
|
|
InputBitStream bit_input = [&]() -> InputBitStream {
|
|
if (m_file) {
|
|
return InputBitStream(m_stream->get<Core::InputFileStream>());
|
|
}
|
|
return InputBitStream(m_stream->get<InputMemoryStream>());
|
|
}();
|
|
ScopeGuard clear_bit_input_errors([&bit_input] { bit_input.handle_any_error(); });
|
|
|
|
#define CHECK_OK(msg) \
|
|
do { \
|
|
if (!ok) { \
|
|
m_stream->handle_any_error(); \
|
|
m_error_string = String::formatted("Parsing failed: {}", msg); \
|
|
return {}; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Magic number
|
|
u32 flac = bit_input.read_bits_big_endian(32);
|
|
m_data_start_location += 4;
|
|
ok = ok && flac == 0x664C6143; // "flaC"
|
|
CHECK_OK("FLAC magic number");
|
|
|
|
// Receive the streaminfo block
|
|
FlacRawMetadataBlock streaminfo = next_meta_block(bit_input);
|
|
// next_meta_block sets the error string if something goes wrong
|
|
ok = ok && m_error_string.is_empty();
|
|
CHECK_OK(m_error_string);
|
|
ok = ok && (streaminfo.type == FlacMetadataBlockType::STREAMINFO);
|
|
CHECK_OK("First block type");
|
|
InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes());
|
|
InputBitStream streaminfo_data(streaminfo_data_memory);
|
|
ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); });
|
|
|
|
// STREAMINFO block
|
|
m_min_block_size = streaminfo_data.read_bits_big_endian(16);
|
|
ok = ok && (m_min_block_size >= 16);
|
|
CHECK_OK("Minimum block size");
|
|
m_max_block_size = streaminfo_data.read_bits_big_endian(16);
|
|
ok = ok && (m_max_block_size >= 16);
|
|
CHECK_OK("Maximum block size");
|
|
m_min_frame_size = streaminfo_data.read_bits_big_endian(24);
|
|
m_max_frame_size = streaminfo_data.read_bits_big_endian(24);
|
|
m_sample_rate = streaminfo_data.read_bits_big_endian(20);
|
|
ok = ok && (m_sample_rate <= 655350);
|
|
CHECK_OK("Sample rate");
|
|
m_num_channels = streaminfo_data.read_bits_big_endian(3) + 1; // 0 ^= one channel
|
|
|
|
u8 bits_per_sample = streaminfo_data.read_bits_big_endian(5) + 1;
|
|
if (bits_per_sample == 8) {
|
|
// FIXME: Signed/Unsigned issues?
|
|
m_sample_format = PcmSampleFormat::Uint8;
|
|
} else if (bits_per_sample == 16) {
|
|
m_sample_format = PcmSampleFormat::Int16;
|
|
} else if (bits_per_sample == 24) {
|
|
m_sample_format = PcmSampleFormat::Int24;
|
|
} else if (bits_per_sample == 32) {
|
|
m_sample_format = PcmSampleFormat::Int32;
|
|
} else {
|
|
ok = false;
|
|
CHECK_OK("Sample bit depth");
|
|
}
|
|
|
|
m_total_samples = streaminfo_data.read_bits_big_endian(36);
|
|
ok = ok && (m_total_samples > 0);
|
|
CHECK_OK("Number of samples");
|
|
// Parse checksum into a buffer first
|
|
Array<u8, 128 / 8> md5_checksum;
|
|
auto md5_bytes_read = streaminfo_data.read(md5_checksum);
|
|
ok = ok && (md5_bytes_read == md5_checksum.size());
|
|
CHECK_OK("MD5 Checksum");
|
|
md5_checksum.span().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
|
|
|
|
// Parse other blocks
|
|
// TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification.
|
|
// Especially the SEEKTABLE block may become useful in a more sophisticated version.
|
|
[[maybe_unused]] u16 meta_blocks_parsed = 1;
|
|
[[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
|
|
FlacRawMetadataBlock block = streaminfo;
|
|
while (!block.is_last_block) {
|
|
block = next_meta_block(bit_input);
|
|
++total_meta_blocks;
|
|
ok = ok && m_error_string.is_empty();
|
|
CHECK_OK(m_error_string);
|
|
}
|
|
|
|
if (m_stream->handle_any_error()) {
|
|
m_error_string = "Parsing failed: Stream";
|
|
return false;
|
|
}
|
|
|
|
if constexpr (AFLACLOADER_DEBUG) {
|
|
// HACK: u128 should be able to format itself
|
|
StringBuilder checksum_string;
|
|
for (unsigned int i = 0; i < md5_checksum.size(); ++i) {
|
|
checksum_string.appendff("{:0X}", md5_checksum[i]);
|
|
}
|
|
dbgln("Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, m_total_samples / static_cast<double>(m_sample_rate), checksum_string.to_string(), m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
|
|
}
|
|
|
|
return true;
|
|
#undef CHECK_OK
|
|
}
|
|
|
|
FlacRawMetadataBlock FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input)
|
|
{
|
|
#define CHECK_IO_ERROR() \
|
|
do { \
|
|
if (bit_input.handle_any_error()) { \
|
|
m_error_string = "Read error"; \
|
|
return FlacRawMetadataBlock {}; \
|
|
} \
|
|
} while (0)
|
|
|
|
bool is_last_block = bit_input.read_bit_big_endian();
|
|
CHECK_IO_ERROR();
|
|
// The block type enum constants agree with the specification
|
|
FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7);
|
|
CHECK_IO_ERROR();
|
|
if (type == FlacMetadataBlockType::INVALID) {
|
|
m_error_string = "Invalid metadata block";
|
|
return FlacRawMetadataBlock {};
|
|
}
|
|
m_data_start_location += 1;
|
|
|
|
u32 block_length = bit_input.read_bits_big_endian(24);
|
|
m_data_start_location += 3;
|
|
CHECK_IO_ERROR();
|
|
auto block_data_result = ByteBuffer::create_uninitialized(block_length);
|
|
if (!block_data_result.has_value()) {
|
|
m_error_string = "Out of memory";
|
|
return FlacRawMetadataBlock {};
|
|
}
|
|
auto block_data = block_data_result.release_value();
|
|
// Reads exactly the bytes necessary into the Bytes container
|
|
bit_input.read(block_data);
|
|
m_data_start_location += block_length;
|
|
CHECK_IO_ERROR();
|
|
return FlacRawMetadataBlock {
|
|
is_last_block,
|
|
type,
|
|
block_length,
|
|
block_data,
|
|
};
|
|
|
|
#undef CHECK_IO_ERROR
|
|
}
|
|
|
|
void FlacLoaderPlugin::reset()
|
|
{
|
|
seek(m_data_start_location);
|
|
m_current_frame.clear();
|
|
}
|
|
|
|
void FlacLoaderPlugin::seek(const int position)
|
|
{
|
|
if (!m_stream->seek(position)) {
|
|
m_error_string = String::formatted("Invalid seek position {}", position);
|
|
m_valid = false;
|
|
}
|
|
}
|
|
|
|
RefPtr<Buffer> FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
|
|
{
|
|
Vector<Sample> samples;
|
|
ssize_t remaining_samples = m_total_samples - m_loaded_samples;
|
|
if (remaining_samples <= 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
|
|
while (samples_to_read > 0) {
|
|
if (!m_current_frame.has_value()) {
|
|
next_frame();
|
|
if (!m_error_string.is_empty()) {
|
|
m_error_string = String::formatted("Frame parsing error: {}", m_error_string);
|
|
return nullptr;
|
|
}
|
|
}
|
|
samples.append(m_current_frame_data.take_first());
|
|
if (m_current_frame_data.size() == 0) {
|
|
m_current_frame.clear();
|
|
}
|
|
--samples_to_read;
|
|
}
|
|
|
|
m_loaded_samples += samples.size();
|
|
return Buffer::create_with_samples(move(samples));
|
|
}
|
|
|
|
void FlacLoaderPlugin::next_frame()
|
|
{
|
|
bool ok = true;
|
|
InputBitStream bit_stream = m_stream->bit_stream();
|
|
#define CHECK_OK(msg) \
|
|
do { \
|
|
if (!ok) { \
|
|
m_error_string = String::formatted("Frame parsing failed: {}", msg); \
|
|
bit_stream.align_to_byte_boundary(); \
|
|
bit_stream.handle_any_error(); \
|
|
dbgln_if(AFLACLOADER_DEBUG, "Crash in FLAC loader: next bytes are {:x}", bit_stream.read_bits_big_endian(32)); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CHECK_ERROR_STRING \
|
|
do { \
|
|
if (!m_error_string.is_null() && !m_error_string.is_empty()) { \
|
|
ok = false; \
|
|
CHECK_OK(m_error_string); \
|
|
} \
|
|
} while (0)
|
|
|
|
// TODO: Check the CRC-16 checksum (and others) by keeping track of read data
|
|
|
|
// FLAC frame sync code starts header
|
|
u16 sync_code = bit_stream.read_bits_big_endian(14);
|
|
ok = ok && (sync_code == 0b11111111111110);
|
|
CHECK_OK("Sync code");
|
|
bool reserved_bit = bit_stream.read_bit_big_endian();
|
|
ok = ok && (reserved_bit == 0);
|
|
CHECK_OK("Reserved frame header bit");
|
|
[[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian();
|
|
|
|
u32 sample_count = convert_sample_count_code(bit_stream.read_bits_big_endian(4));
|
|
CHECK_ERROR_STRING;
|
|
|
|
u32 frame_sample_rate = convert_sample_rate_code(bit_stream.read_bits_big_endian(4));
|
|
CHECK_ERROR_STRING;
|
|
|
|
u8 channel_type_num = bit_stream.read_bits_big_endian(4);
|
|
if (channel_type_num >= 0b1011) {
|
|
ok = false;
|
|
CHECK_OK("Channel assignment");
|
|
}
|
|
FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
|
|
|
|
PcmSampleFormat bit_depth = convert_bit_depth_code(bit_stream.read_bits_big_endian(3));
|
|
CHECK_ERROR_STRING;
|
|
|
|
reserved_bit = bit_stream.read_bit_big_endian();
|
|
ok = ok && (reserved_bit == 0);
|
|
CHECK_OK("Reserved frame header end bit");
|
|
|
|
// FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
|
|
m_current_sample_or_frame = read_utf8_char(bit_stream);
|
|
|
|
// Conditional header variables
|
|
if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
|
|
sample_count = bit_stream.read_bits_big_endian(8) + 1;
|
|
} else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
|
|
sample_count = bit_stream.read_bits_big_endian(16) + 1;
|
|
}
|
|
|
|
if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
|
|
frame_sample_rate = bit_stream.read_bits_big_endian(8) * 1000;
|
|
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
|
|
frame_sample_rate = bit_stream.read_bits_big_endian(16);
|
|
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
|
|
frame_sample_rate = bit_stream.read_bits_big_endian(16) * 10;
|
|
}
|
|
|
|
// TODO: check header checksum, see above
|
|
[[maybe_unused]] u8 checksum = bit_stream.read_bits(8);
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
|
|
|
|
m_current_frame = FlacFrameHeader {
|
|
sample_count,
|
|
frame_sample_rate,
|
|
channel_type,
|
|
bit_depth,
|
|
};
|
|
|
|
u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
|
|
Vector<Vector<i32>> current_subframes;
|
|
current_subframes.ensure_capacity(subframe_count);
|
|
|
|
for (u8 i = 0; i < subframe_count; ++i) {
|
|
FlacSubframeHeader new_subframe = next_subframe_header(bit_stream, i);
|
|
CHECK_ERROR_STRING;
|
|
Vector<i32> subframe_samples = parse_subframe(new_subframe, bit_stream);
|
|
CHECK_ERROR_STRING;
|
|
current_subframes.append(move(subframe_samples));
|
|
}
|
|
|
|
bit_stream.align_to_byte_boundary();
|
|
|
|
// TODO: check checksum, see above
|
|
[[maybe_unused]] u16 footer_checksum = bit_stream.read_bits_big_endian(16);
|
|
|
|
Vector<i32> left, right;
|
|
|
|
switch (channel_type) {
|
|
case FlacFrameChannelType::Mono:
|
|
left = right = current_subframes[0];
|
|
break;
|
|
case FlacFrameChannelType::Stereo:
|
|
// TODO mix together surround channels on each side?
|
|
case FlacFrameChannelType::StereoCenter:
|
|
case FlacFrameChannelType::Surround4p0:
|
|
case FlacFrameChannelType::Surround5p0:
|
|
case FlacFrameChannelType::Surround5p1:
|
|
case FlacFrameChannelType::Surround6p1:
|
|
case FlacFrameChannelType::Surround7p1:
|
|
left = current_subframes[0];
|
|
right = current_subframes[1];
|
|
break;
|
|
case FlacFrameChannelType::LeftSideStereo:
|
|
// channels are left (0) and side (1)
|
|
left = current_subframes[0];
|
|
right.ensure_capacity(left.size());
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
// right = left - side
|
|
right.unchecked_append(left[i] - current_subframes[1][i]);
|
|
}
|
|
break;
|
|
case FlacFrameChannelType::RightSideStereo:
|
|
// channels are side (0) and right (1)
|
|
right = current_subframes[1];
|
|
left.ensure_capacity(right.size());
|
|
for (size_t i = 0; i < right.size(); ++i) {
|
|
// left = right + side
|
|
left.unchecked_append(right[i] + current_subframes[0][i]);
|
|
}
|
|
break;
|
|
case FlacFrameChannelType::MidSideStereo:
|
|
// channels are mid (0) and side (1)
|
|
left.ensure_capacity(current_subframes[0].size());
|
|
right.ensure_capacity(current_subframes[0].size());
|
|
for (size_t i = 0; i < current_subframes[0].size(); ++i) {
|
|
i64 mid = current_subframes[0][i];
|
|
i64 side = current_subframes[1][i];
|
|
mid *= 2;
|
|
// prevent integer division errors
|
|
left.unchecked_append(static_cast<i32>((mid + side) / 2));
|
|
right.unchecked_append(static_cast<i32>((mid - side) / 2));
|
|
}
|
|
break;
|
|
}
|
|
|
|
VERIFY(left.size() == right.size());
|
|
|
|
double sample_rescale = static_cast<double>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
|
|
dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
|
|
|
|
m_current_frame_data.clear_with_capacity();
|
|
m_current_frame_data.ensure_capacity(left.size());
|
|
// zip together channels
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
|
|
m_current_frame_data.unchecked_append(frame);
|
|
}
|
|
|
|
#undef CHECK_OK
|
|
#undef CHECK_ERROR_STRING
|
|
}
|
|
|
|
u32 FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
|
|
{
|
|
// single codes
|
|
switch (sample_count_code) {
|
|
case 0:
|
|
m_error_string = "Reserved block size";
|
|
return 0;
|
|
case 1:
|
|
return 192;
|
|
case 6:
|
|
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
|
|
case 7:
|
|
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
|
|
}
|
|
if (sample_count_code >= 2 && sample_count_code <= 5) {
|
|
return 576 * AK::exp2(sample_count_code - 2);
|
|
}
|
|
return 256 * AK::exp2(sample_count_code - 8);
|
|
}
|
|
|
|
u32 FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
|
|
{
|
|
switch (sample_rate_code) {
|
|
case 0:
|
|
return m_sample_rate;
|
|
case 1:
|
|
return 88200;
|
|
case 2:
|
|
return 176400;
|
|
case 3:
|
|
return 192000;
|
|
case 4:
|
|
return 8000;
|
|
case 5:
|
|
return 16000;
|
|
case 6:
|
|
return 22050;
|
|
case 7:
|
|
return 24000;
|
|
case 8:
|
|
return 32000;
|
|
case 9:
|
|
return 44100;
|
|
case 10:
|
|
return 48000;
|
|
case 11:
|
|
return 96000;
|
|
case 12:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
|
|
case 13:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
|
|
case 14:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
|
|
default:
|
|
m_error_string = "Invalid sample rate code";
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
PcmSampleFormat FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
|
|
{
|
|
switch (bit_depth_code) {
|
|
case 0:
|
|
return m_sample_format;
|
|
case 1:
|
|
return PcmSampleFormat::Uint8;
|
|
case 4:
|
|
return PcmSampleFormat::Int16;
|
|
case 6:
|
|
return PcmSampleFormat::Int24;
|
|
case 3:
|
|
case 7:
|
|
m_error_string = "Reserved sample size";
|
|
return PcmSampleFormat::Float64;
|
|
default:
|
|
m_error_string = String::formatted("Unsupported sample size {}", bit_depth_code);
|
|
return PcmSampleFormat::Float64;
|
|
}
|
|
}
|
|
|
|
u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
|
|
{
|
|
if (channel_type <= 7)
|
|
return channel_type + 1;
|
|
return 2;
|
|
}
|
|
|
|
FlacSubframeHeader FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index)
|
|
{
|
|
u8 bits_per_sample = pcm_bits_per_sample(m_current_frame->bit_depth);
|
|
|
|
// For inter-channel correlation, the side channel needs an extra bit for its samples
|
|
switch (m_current_frame->channels) {
|
|
case LeftSideStereo:
|
|
case MidSideStereo:
|
|
if (channel_index == 1) {
|
|
++bits_per_sample;
|
|
}
|
|
break;
|
|
case RightSideStereo:
|
|
if (channel_index == 0) {
|
|
++bits_per_sample;
|
|
}
|
|
break;
|
|
// "normal" channel types
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// zero-bit padding
|
|
if (bit_stream.read_bit_big_endian() != 0) {
|
|
m_error_string = "Zero bit padding";
|
|
return {};
|
|
};
|
|
|
|
// subframe type (encoding)
|
|
u8 subframe_code = bit_stream.read_bits_big_endian(6);
|
|
if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) {
|
|
m_error_string = "Subframe type";
|
|
return {};
|
|
}
|
|
|
|
FlacSubframeType subframe_type;
|
|
u8 order = 0;
|
|
// LPC has the highest bit set
|
|
if ((subframe_code & 0b100000) > 0) {
|
|
subframe_type = FlacSubframeType::LPC;
|
|
order = (subframe_code & 0b011111) + 1;
|
|
} else if ((subframe_code & 0b001000) > 0) {
|
|
// Fixed has the third-highest bit set
|
|
subframe_type = FlacSubframeType::Fixed;
|
|
order = (subframe_code & 0b000111);
|
|
} else {
|
|
subframe_type = (FlacSubframeType)subframe_code;
|
|
}
|
|
|
|
// wasted bits per sample (unary encoding)
|
|
bool has_wasted_bits = bit_stream.read_bit_big_endian();
|
|
u8 k = 0;
|
|
if (has_wasted_bits) {
|
|
bool current_k_bit = 0;
|
|
do {
|
|
current_k_bit = bit_stream.read_bit_big_endian();
|
|
++k;
|
|
} while (current_k_bit != 1);
|
|
}
|
|
|
|
return FlacSubframeHeader {
|
|
subframe_type,
|
|
order,
|
|
k,
|
|
bits_per_sample
|
|
};
|
|
}
|
|
|
|
Vector<i32> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> samples;
|
|
|
|
switch (subframe_header.type) {
|
|
case FlacSubframeType::Constant: {
|
|
u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
|
|
dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
|
|
|
|
samples.ensure_capacity(m_current_frame->sample_count);
|
|
for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
|
|
samples.unchecked_append(sign_extend(constant_value, subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample));
|
|
}
|
|
break;
|
|
}
|
|
case FlacSubframeType::Fixed: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
|
|
samples = decode_fixed_lpc(subframe_header, bit_input);
|
|
break;
|
|
}
|
|
case FlacSubframeType::Verbatim: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
|
|
samples = decode_verbatim(subframe_header, bit_input);
|
|
break;
|
|
}
|
|
case FlacSubframeType::LPC: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
|
|
samples = decode_custom_lpc(subframe_header, bit_input);
|
|
break;
|
|
}
|
|
default:
|
|
m_error_string = "Unhandled FLAC subframe type";
|
|
return {};
|
|
}
|
|
if (!m_error_string.is_empty()) {
|
|
return {};
|
|
}
|
|
|
|
for (size_t i = 0; i < samples.size(); ++i) {
|
|
samples[i] <<= subframe_header.wasted_bits_per_sample;
|
|
}
|
|
|
|
ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
|
|
return resampler.resample(samples);
|
|
}
|
|
|
|
// Decode a subframe that isn't actually encoded, usually seen in random data
|
|
Vector<i32> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
for (size_t i = 0; i < m_current_frame->sample_count; ++i) {
|
|
decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
|
|
Vector<i32> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
// warm-up samples
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
// precision of the coefficients
|
|
u8 lpc_precision = bit_input.read_bits_big_endian(4);
|
|
if (lpc_precision == 0b1111) {
|
|
m_error_string = "Invalid linear predictor coefficient precision";
|
|
return {};
|
|
}
|
|
lpc_precision += 1;
|
|
|
|
// shift needed on the data (signed!)
|
|
i8 lpc_shift = sign_extend(bit_input.read_bits_big_endian(5), 5);
|
|
|
|
Vector<i32> coefficients;
|
|
coefficients.ensure_capacity(subframe.order);
|
|
// read coefficients
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
u32 raw_coefficient = bit_input.read_bits_big_endian(lpc_precision);
|
|
i32 coefficient = sign_extend(raw_coefficient, lpc_precision);
|
|
coefficients.unchecked_append(coefficient);
|
|
}
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);
|
|
|
|
// decode residual
|
|
// FIXME: This order may be incorrect, the LPC is applied to the residual, probably leading to incorrect results.
|
|
decoded = decode_residual(decoded, subframe, bit_input);
|
|
|
|
// approximate the waveform with the predictor
|
|
for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
|
|
i64 sample = 0;
|
|
for (size_t t = 0; t < subframe.order; ++t) {
|
|
sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
|
|
}
|
|
decoded[i] += sample >> lpc_shift;
|
|
}
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a subframe encoded with one of the fixed linear predictor codings
|
|
Vector<i32> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
// warm-up samples
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
decode_residual(decoded, subframe, bit_input);
|
|
if (!m_error_string.is_empty())
|
|
return {};
|
|
dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
|
|
|
|
switch (subframe.order) {
|
|
case 0:
|
|
// s_0(t) = 0
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 0;
|
|
break;
|
|
case 1:
|
|
// s_1(t) = s(t-1)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += decoded[i - 1];
|
|
break;
|
|
case 2:
|
|
// s_2(t) = 2s(t-1) - s(t-2)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
|
|
break;
|
|
case 3:
|
|
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
|
|
break;
|
|
case 4:
|
|
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
|
|
break;
|
|
default:
|
|
m_error_string = String::formatted("Unrecognized predictor order {}", subframe.order);
|
|
break;
|
|
}
|
|
return decoded;
|
|
}
|
|
|
|
// Decode the residual, the "error" between the function approximation and the actual audio data
|
|
Vector<i32> FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
u8 residual_mode = bit_input.read_bits_big_endian(2);
|
|
u8 partition_order = bit_input.read_bits_big_endian(4);
|
|
size_t partitions = 1 << partition_order;
|
|
|
|
if (residual_mode == FlacResidualMode::Rice4Bit) {
|
|
// decode a single Rice partition with four bits for the order k
|
|
for (size_t i = 0; i < partitions; ++i) {
|
|
auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input);
|
|
decoded.extend(move(rice_partition));
|
|
}
|
|
} else if (residual_mode == FlacResidualMode::Rice5Bit) {
|
|
// five bits equivalent
|
|
for (size_t i = 0; i < partitions; ++i) {
|
|
auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input);
|
|
decoded.extend(move(rice_partition));
|
|
}
|
|
} else {
|
|
m_error_string = "Reserved residual coding method";
|
|
return {};
|
|
}
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
|
|
ALWAYS_INLINE Vector<i32> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
// Rice parameter / Exp-Golomb order
|
|
u8 k = bit_input.read_bits_big_endian(partition_type);
|
|
|
|
u32 residual_sample_count;
|
|
if (partitions == 0)
|
|
residual_sample_count = m_current_frame->sample_count - subframe.order;
|
|
else
|
|
residual_sample_count = m_current_frame->sample_count / partitions;
|
|
if (partition_index == 0)
|
|
residual_sample_count -= subframe.order;
|
|
|
|
Vector<i32> rice_partition;
|
|
rice_partition.resize(residual_sample_count);
|
|
|
|
// escape code for unencoded binary partition
|
|
if (k == (1 << partition_type) - 1) {
|
|
u8 unencoded_bps = bit_input.read_bits_big_endian(5);
|
|
for (size_t r = 0; r < residual_sample_count; ++r) {
|
|
rice_partition[r] = bit_input.read_bits_big_endian(unencoded_bps);
|
|
}
|
|
} else {
|
|
for (size_t r = 0; r < residual_sample_count; ++r) {
|
|
rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input);
|
|
}
|
|
}
|
|
|
|
return rice_partition;
|
|
}
|
|
|
|
// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
|
|
ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input)
|
|
{
|
|
u8 q = 0;
|
|
while (bit_input.read_bit_big_endian() == 0)
|
|
++q;
|
|
|
|
// least significant bits (remainder)
|
|
u32 rem = bit_input.read_bits_big_endian(k);
|
|
u32 value = (u32)(q << k | rem);
|
|
|
|
return rice_to_signed(value);
|
|
}
|
|
|
|
u64 read_utf8_char(InputStream& input)
|
|
{
|
|
u64 character;
|
|
u8 buffer = 0;
|
|
Bytes buffer_bytes { &buffer, 1 };
|
|
input.read(buffer_bytes);
|
|
u8 start_byte = buffer_bytes[0];
|
|
// Signal byte is zero: ASCII character
|
|
if ((start_byte & 0b10000000) == 0) {
|
|
return start_byte;
|
|
} else if ((start_byte & 0b11000000) == 0b10000000) {
|
|
// illegal continuation byte
|
|
return 0;
|
|
}
|
|
// This algorithm is too good and supports the theoretical max 0xFF start byte
|
|
u8 length = 1;
|
|
while (((start_byte << length) & 0b10000000) == 0b10000000)
|
|
++length;
|
|
u8 bits_from_start_byte = 8 - (length + 1);
|
|
u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
|
|
character = start_byte_bitmask & start_byte;
|
|
for (u8 i = length - 1; i > 0; --i) {
|
|
input.read(buffer_bytes);
|
|
u8 current_byte = buffer_bytes[0];
|
|
character = (character << 6) | (current_byte & 0b00111111);
|
|
}
|
|
return character;
|
|
}
|
|
|
|
i64 sign_extend(u32 n, u8 size)
|
|
{
|
|
// negative
|
|
if ((n & (1 << (size - 1))) > 0) {
|
|
return static_cast<i64>(n | (0xffffffff << size));
|
|
}
|
|
// positive
|
|
return n;
|
|
}
|
|
|
|
i32 rice_to_signed(u32 x)
|
|
{
|
|
// positive numbers are even, negative numbers are odd
|
|
// bitmask for conditionally inverting the entire number, thereby "negating" it
|
|
i32 sign = -(x & 1);
|
|
// copies the sign's sign onto the actual magnitude of x
|
|
return (i32)(sign ^ (x >> 1));
|
|
}
|
|
}
|