
This allows using different options for rounding, like IEEE roundTiesToEven, which is the mode that JS requires. Also fix that the last word read from the bigint for the mantissa could be shifted incorrectly leading to incorrect results.
497 lines
18 KiB
C++
497 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "SignedBigInteger.h"
|
|
#include <AK/StringBuilder.h>
|
|
#include <math.h>
|
|
|
|
namespace Crypto {
|
|
|
|
SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length)
|
|
{
|
|
bool sign = *ptr;
|
|
auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
|
|
return { move(unsigned_data), sign };
|
|
}
|
|
|
|
size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
|
|
{
|
|
// FIXME: Support this:
|
|
// m <0XX> -> m <XX> (if remove_leading_zeros)
|
|
VERIFY(!remove_leading_zeros);
|
|
|
|
data[0] = m_sign;
|
|
auto bytes_view = data.slice(1, data.size() - 1);
|
|
return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1;
|
|
}
|
|
|
|
SignedBigInteger SignedBigInteger::from_base(u16 N, StringView str)
|
|
{
|
|
auto sign = false;
|
|
if (str.length() > 1) {
|
|
auto maybe_sign = str[0];
|
|
if (maybe_sign == '-') {
|
|
str = str.substring_view(1);
|
|
sign = true;
|
|
}
|
|
if (maybe_sign == '+')
|
|
str = str.substring_view(1);
|
|
}
|
|
auto unsigned_data = UnsignedBigInteger::from_base(N, str);
|
|
return { move(unsigned_data), sign };
|
|
}
|
|
|
|
String SignedBigInteger::to_base(u16 N) const
|
|
{
|
|
StringBuilder builder;
|
|
|
|
if (m_sign)
|
|
builder.append('-');
|
|
|
|
builder.append(m_unsigned_data.to_base(N));
|
|
|
|
return builder.to_string();
|
|
}
|
|
|
|
u64 SignedBigInteger::to_u64() const
|
|
{
|
|
u64 unsigned_value = m_unsigned_data.to_u64();
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN
|
|
}
|
|
|
|
double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
|
|
{
|
|
double unsigned_value = m_unsigned_data.to_double(rounding_mode);
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
|
|
VERIFY(!is_zero());
|
|
return -unsigned_value;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const
|
|
{
|
|
// If both are of the same sign, just add the unsigned data and return.
|
|
if (m_sign == other.m_sign)
|
|
return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
|
|
|
|
// One value is signed while the other is not.
|
|
return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const
|
|
{
|
|
// If the signs are different, convert the op to an addition.
|
|
if (m_sign != other.m_sign) {
|
|
// -x - y = - (x + y)
|
|
// x - -y = (x + y)
|
|
SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
|
|
if (m_sign)
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
if (!m_sign) {
|
|
// Both operands are positive.
|
|
// x - y = - (y - x)
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return { other.m_unsigned_data.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
// The result will be either zero, or positive.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
|
|
}
|
|
|
|
// Both operands are negative.
|
|
// -x - -y = y - x
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be positive.
|
|
return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) };
|
|
}
|
|
// y - x = - (x - y)
|
|
if (m_unsigned_data > other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true };
|
|
}
|
|
// Both operands have the same magnitude, the result is positive zero.
|
|
return SignedBigInteger { 0 };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign) {
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), true };
|
|
|
|
return { other.minus(m_unsigned_data), false };
|
|
}
|
|
|
|
return { m_unsigned_data.plus(other), false };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return { m_unsigned_data.plus(m_unsigned_data), true };
|
|
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), false };
|
|
|
|
return { other.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const
|
|
{
|
|
// Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude.
|
|
// In two's complement, -x := ~x + 1.
|
|
// Hence, ~x == -x -1 == -(x + 1).
|
|
SignedBigInteger result = plus(SignedBigInteger { 1 });
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
|
|
{
|
|
return { unsigned_value().multiplied_by(other), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
|
|
{
|
|
auto division_result = unsigned_value().divided_by(divisor);
|
|
return {
|
|
{ move(division_result.quotient), m_sign },
|
|
{ move(division_result.remainder), m_sign },
|
|
};
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const
|
|
{
|
|
// See bitwise_and() for derivations.
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_or(other.unsigned_value()), false };
|
|
|
|
// -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field.
|
|
// That can be simplified to:
|
|
// -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1
|
|
// This saves one ~.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true };
|
|
}
|
|
|
|
// -(A | -B) == ~A & (B - 1) + 1
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const
|
|
{
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_and(other.unsigned_value()), false };
|
|
|
|
// These two just use that -x == ~x + 1 (see below).
|
|
|
|
// -A & B == (~A + 1) & B.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false };
|
|
}
|
|
|
|
// A & -B == A & (~B + 1).
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false };
|
|
}
|
|
|
|
// Both numbers are negative.
|
|
// x + ~x == 0xff...ff, up to however many bits x is wide.
|
|
// In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out.
|
|
// Rearranging terms, ~x = -x - 1 (eq1).
|
|
// Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2).
|
|
// Since both numbers are negative, we want to compute -A & -B.
|
|
// Per (eq2):
|
|
// -A & -B == ~(A - 1) & ~(B - 1)
|
|
// Inverting both sides:
|
|
// ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1).
|
|
// Applying (q1) on the LHS:
|
|
// -(-A & -B) - 1 == (A - 1) | (B - 1)
|
|
// Adding 1 on both sides and then multiplying both sides by -1:
|
|
// -A & -B == -( (A - 1) | (B - 1) + 1)
|
|
// So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1.
|
|
// This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s.
|
|
return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const
|
|
{
|
|
return bitwise_or(other).minus(bitwise_and(other));
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return false;
|
|
return m_unsigned_data == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data != other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data < other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
|
|
{
|
|
return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const
|
|
{
|
|
bool result_sign = m_sign ^ other.m_sign;
|
|
return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const
|
|
{
|
|
// Aa / Bb -> (A^B)q, Ar
|
|
bool result_sign = m_sign ^ divisor.m_sign;
|
|
auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
|
|
return {
|
|
{ move(unsigned_division_result.quotient), result_sign },
|
|
{ move(unsigned_division_result.remainder), m_sign }
|
|
};
|
|
}
|
|
|
|
u32 SignedBigInteger::hash() const
|
|
{
|
|
return m_unsigned_data.hash() * (1 - (2 * m_sign));
|
|
}
|
|
|
|
void SignedBigInteger::set_bit_inplace(size_t bit_index)
|
|
{
|
|
m_unsigned_data.set_bit_inplace(bit_index);
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(SignedBigInteger const& other) const
|
|
{
|
|
if (is_invalid() != other.is_invalid())
|
|
return false;
|
|
|
|
if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
|
|
return true;
|
|
|
|
return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(SignedBigInteger const& other) const
|
|
{
|
|
if (m_sign ^ other.m_sign)
|
|
return m_sign;
|
|
|
|
if (m_sign)
|
|
return other.m_unsigned_data < m_unsigned_data;
|
|
|
|
return m_unsigned_data < other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<=(SignedBigInteger const& other) const
|
|
{
|
|
return *this < other || *this == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(SignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this < other);
|
|
}
|
|
|
|
SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
|
|
{
|
|
VERIFY(!isnan(value));
|
|
|
|
if (isinf(value)) {
|
|
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
|
|
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
bool bigint_is_negative = m_sign;
|
|
|
|
bool value_is_negative = value < 0;
|
|
|
|
if (value_is_negative != bigint_is_negative)
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
|
|
// Value is zero, and from above the signs must be the same.
|
|
if (value == 0.0) {
|
|
VERIFY(!value_is_negative && !bigint_is_negative);
|
|
// Either we are also zero or value is certainly less than us.
|
|
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
// If value is not zero but we are, then since the signs are the same value must be greater.
|
|
if (is_zero())
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
constexpr u64 mantissa_size = 52;
|
|
constexpr u64 exponent_size = 11;
|
|
constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
|
|
union FloatExtractor {
|
|
struct {
|
|
unsigned long long mantissa : mantissa_size;
|
|
unsigned exponent : exponent_size;
|
|
unsigned sign : 1;
|
|
};
|
|
double d;
|
|
} extractor;
|
|
|
|
extractor.d = value;
|
|
VERIFY(extractor.exponent != (1 << exponent_size) - 1);
|
|
// Exponent cannot be filled as than we must be NaN or infinity.
|
|
|
|
i32 real_exponent = extractor.exponent - exponent_bias;
|
|
if (real_exponent < 0) {
|
|
// |value| is less than 1, and we cannot be zero so if we are negative
|
|
// value must be greater and vice versa.
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit();
|
|
VERIFY(bigint_bits_needed > 0);
|
|
|
|
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
|
|
// `exponent - bias + 1` bit to represent doubles value,
|
|
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
|
|
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
|
|
u32 double_bits_needed = real_exponent + 1;
|
|
|
|
if (bigint_bits_needed > double_bits_needed) {
|
|
// If we need more bits to represent us, we must be of greater magnitude
|
|
// this means that if we are negative we are below value and if positive above value.
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
if (bigint_bits_needed < double_bits_needed)
|
|
return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
u64 mantissa_bits = extractor.mantissa;
|
|
|
|
// We add the bit which represents the 1. of the double value calculation
|
|
constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
|
|
|
|
mantissa_bits |= mantissa_extended_bit;
|
|
|
|
// Now we shift value to the left virtually, with `exponent - bias` steps
|
|
// we then pretend both it and the big int are extended with virtual zeros.
|
|
using Word = UnsignedBigInteger::Word;
|
|
auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD;
|
|
|
|
VERIFY(next_bigint_word + 1 == trimmed_length());
|
|
|
|
auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD;
|
|
VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
|
|
|
|
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
|
|
mantissa_bits <<= 64 - (mantissa_size + 1);
|
|
|
|
auto bits_left_in_mantissa = mantissa_size + 1;
|
|
|
|
auto get_next_value_bits = [&](size_t num_bits) -> Word {
|
|
VERIFY(num_bits < 63);
|
|
VERIFY(bits_left_in_mantissa > 0);
|
|
if (num_bits > bits_left_in_mantissa)
|
|
num_bits = bits_left_in_mantissa;
|
|
|
|
bits_left_in_mantissa -= num_bits;
|
|
|
|
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
|
|
// Now shift the bits down to put the most significant bit on the num_bits position
|
|
// this means the rest will be "virtual" zeros.
|
|
extracted_bits >>= 32;
|
|
|
|
// Now shift away the used bits and fit the result into a Word.
|
|
mantissa_bits <<= num_bits;
|
|
|
|
VERIFY(extracted_bits <= NumericLimits<Word>::max());
|
|
return static_cast<Word>(extracted_bits);
|
|
};
|
|
|
|
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
|
|
|
|
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
|
|
Word bigint_word = words()[next_bigint_word - 1];
|
|
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
|
|
|
|
// For the first bit we have to align it with the top bit of bigint
|
|
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
|
|
double_word >>= 32 - bits_in_next_bigint_word;
|
|
|
|
if (bigint_word < double_word)
|
|
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
if (bigint_word > double_word)
|
|
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
|
|
--next_bigint_word;
|
|
bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD;
|
|
}
|
|
|
|
// If there are still bits left in bigint than any non zero bit means it has greater magnitude.
|
|
if (next_bigint_word > 0) {
|
|
VERIFY(bits_left_in_mantissa == 0);
|
|
while (next_bigint_word > 0) {
|
|
if (words()[next_bigint_word - 1] != 0)
|
|
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
--next_bigint_word;
|
|
}
|
|
} else if (bits_left_in_mantissa > 0) {
|
|
VERIFY(next_bigint_word == 0);
|
|
// Similarly if there are still any bits set in the mantissa it has greater magnitude.
|
|
if (mantissa_bits != 0)
|
|
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
}
|
|
|
|
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
|
|
return CompareResult::DoubleEqualsBigInt;
|
|
}
|
|
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Crypto::SignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value)
|
|
{
|
|
if (value.is_negative())
|
|
TRY(fmtbuilder.put_string("-"sv));
|
|
return Formatter<Crypto::UnsignedBigInteger>::format(fmtbuilder, value.unsigned_value());
|
|
}
|