/* * Copyright (c) 2020, the SerenityOS developers. * Copyright (c) 2022, David Tuin * * SPDX-License-Identifier: BSD-2-Clause */ #include "SignedBigInteger.h" #include #include namespace Crypto { SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length) { bool sign = *ptr; auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1); return { move(unsigned_data), sign }; } size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const { // FIXME: Support this: // m <0XX> -> m (if remove_leading_zeros) VERIFY(!remove_leading_zeros); data[0] = m_sign; auto bytes_view = data.slice(1, data.size() - 1); return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1; } SignedBigInteger SignedBigInteger::from_base(u16 N, StringView str) { auto sign = false; if (str.length() > 1) { auto maybe_sign = str[0]; if (maybe_sign == '-') { str = str.substring_view(1); sign = true; } if (maybe_sign == '+') str = str.substring_view(1); } auto unsigned_data = UnsignedBigInteger::from_base(N, str); return { move(unsigned_data), sign }; } String SignedBigInteger::to_base(u16 N) const { StringBuilder builder; if (m_sign) builder.append('-'); builder.append(m_unsigned_data.to_base(N)); return builder.to_string(); } u64 SignedBigInteger::to_u64() const { u64 unsigned_value = m_unsigned_data.to_u64(); if (!m_sign) return unsigned_value; return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN } double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const { double unsigned_value = m_unsigned_data.to_double(rounding_mode); if (!m_sign) return unsigned_value; VERIFY(!is_zero()); return -unsigned_value; } FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const { // If both are of the same sign, just add the unsigned data and return. if (m_sign == other.m_sign) return { other.m_unsigned_data.plus(m_unsigned_data), m_sign }; // One value is signed while the other is not. return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data); } FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const { // If the signs are different, convert the op to an addition. if (m_sign != other.m_sign) { // -x - y = - (x + y) // x - -y = (x + y) SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) }; if (m_sign) result.negate(); return result; } if (!m_sign) { // Both operands are positive. // x - y = - (y - x) if (m_unsigned_data < other.m_unsigned_data) { // The result will be negative. return { other.m_unsigned_data.minus(m_unsigned_data), true }; } // The result will be either zero, or positive. return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) }; } // Both operands are negative. // -x - -y = y - x if (m_unsigned_data < other.m_unsigned_data) { // The result will be positive. return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) }; } // y - x = - (x - y) if (m_unsigned_data > other.m_unsigned_data) { // The result will be negative. return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true }; } // Both operands have the same magnitude, the result is positive zero. return SignedBigInteger { 0 }; } FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const { if (m_sign) { if (other < m_unsigned_data) return { m_unsigned_data.minus(other), true }; return { other.minus(m_unsigned_data), false }; } return { m_unsigned_data.plus(other), false }; } FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const { if (m_sign) return { m_unsigned_data.plus(m_unsigned_data), true }; if (other < m_unsigned_data) return { m_unsigned_data.minus(other), false }; return { other.minus(m_unsigned_data), true }; } FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const { // Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude. // In two's complement, -x := ~x + 1. // Hence, ~x == -x -1 == -(x + 1). SignedBigInteger result = plus(SignedBigInteger { 1 }); result.negate(); return result; } FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const { return { unsigned_value().multiplied_by(other), m_sign }; } FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const { auto division_result = unsigned_value().divided_by(divisor); return { { move(division_result.quotient), m_sign }, { move(division_result.remainder), m_sign }, }; } FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const { // See bitwise_and() for derivations. if (!is_negative() && !other.is_negative()) return { unsigned_value().bitwise_or(other.unsigned_value()), false }; // -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field. // That can be simplified to: // -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1 // This saves one ~. if (is_negative() && !other.is_negative()) { size_t index = unsigned_value().one_based_index_of_highest_set_bit(); return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true }; } // -(A | -B) == ~A & (B - 1) + 1 if (!is_negative() && other.is_negative()) { size_t index = other.unsigned_value().one_based_index_of_highest_set_bit(); return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true }; } return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true }; } FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const { if (!is_negative() && !other.is_negative()) return { unsigned_value().bitwise_and(other.unsigned_value()), false }; // These two just use that -x == ~x + 1 (see below). // -A & B == (~A + 1) & B. if (is_negative() && !other.is_negative()) { size_t index = other.unsigned_value().one_based_index_of_highest_set_bit(); return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false }; } // A & -B == A & (~B + 1). if (!is_negative() && other.is_negative()) { size_t index = unsigned_value().one_based_index_of_highest_set_bit(); return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false }; } // Both numbers are negative. // x + ~x == 0xff...ff, up to however many bits x is wide. // In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out. // Rearranging terms, ~x = -x - 1 (eq1). // Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2). // Since both numbers are negative, we want to compute -A & -B. // Per (eq2): // -A & -B == ~(A - 1) & ~(B - 1) // Inverting both sides: // ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1). // Applying (q1) on the LHS: // -(-A & -B) - 1 == (A - 1) | (B - 1) // Adding 1 on both sides and then multiplying both sides by -1: // -A & -B == -( (A - 1) | (B - 1) + 1) // So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1. // This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s. return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true }; } FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const { return bitwise_or(other).minus(bitwise_and(other)); } bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const { if (m_sign) return false; return m_unsigned_data == other; } bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const { if (m_sign) return true; return m_unsigned_data != other; } bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const { if (m_sign) return true; return m_unsigned_data < other; } bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const { return *this != other && !(*this < other); } FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const { return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign }; } FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const { bool result_sign = m_sign ^ other.m_sign; return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign }; } FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const { // Aa / Bb -> (A^B)q, Ar bool result_sign = m_sign ^ divisor.m_sign; auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data); return { { move(unsigned_division_result.quotient), result_sign }, { move(unsigned_division_result.remainder), m_sign } }; } u32 SignedBigInteger::hash() const { return m_unsigned_data.hash() * (1 - (2 * m_sign)); } void SignedBigInteger::set_bit_inplace(size_t bit_index) { m_unsigned_data.set_bit_inplace(bit_index); } bool SignedBigInteger::operator==(SignedBigInteger const& other) const { if (is_invalid() != other.is_invalid()) return false; if (m_unsigned_data == 0 && other.m_unsigned_data == 0) return true; return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data; } bool SignedBigInteger::operator!=(SignedBigInteger const& other) const { return !(*this == other); } bool SignedBigInteger::operator<(SignedBigInteger const& other) const { if (m_sign ^ other.m_sign) return m_sign; if (m_sign) return other.m_unsigned_data < m_unsigned_data; return m_unsigned_data < other.m_unsigned_data; } bool SignedBigInteger::operator<=(SignedBigInteger const& other) const { return *this < other || *this == other; } bool SignedBigInteger::operator>(SignedBigInteger const& other) const { return *this != other && !(*this < other); } bool SignedBigInteger::operator>=(SignedBigInteger const& other) const { return !(*this < other); } SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const { VERIFY(!isnan(value)); if (isinf(value)) { bool is_positive_infinity = __builtin_isinf_sign(value) > 0; return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; } bool bigint_is_negative = m_sign; bool value_is_negative = value < 0; if (value_is_negative != bigint_is_negative) return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; // Value is zero, and from above the signs must be the same. if (value == 0.0) { VERIFY(!value_is_negative && !bigint_is_negative); // Either we are also zero or value is certainly less than us. return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt; } // If value is not zero but we are, then since the signs are the same value must be greater. if (is_zero()) return CompareResult::DoubleGreaterThanBigInt; constexpr u64 mantissa_size = 52; constexpr u64 exponent_size = 11; constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1; union FloatExtractor { struct { unsigned long long mantissa : mantissa_size; unsigned exponent : exponent_size; unsigned sign : 1; }; double d; } extractor; extractor.d = value; VERIFY(extractor.exponent != (1 << exponent_size) - 1); // Exponent cannot be filled as than we must be NaN or infinity. i32 real_exponent = extractor.exponent - exponent_bias; if (real_exponent < 0) { // |value| is less than 1, and we cannot be zero so if we are negative // value must be greater and vice versa. return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; } u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit(); VERIFY(bigint_bits_needed > 0); // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need // `exponent - bias + 1` bit to represent doubles value, // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000). u32 double_bits_needed = real_exponent + 1; if (bigint_bits_needed > double_bits_needed) { // If we need more bits to represent us, we must be of greater magnitude // this means that if we are negative we are below value and if positive above value. return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; } if (bigint_bits_needed < double_bits_needed) return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt; u64 mantissa_bits = extractor.mantissa; // We add the bit which represents the 1. of the double value calculation constexpr u64 mantissa_extended_bit = 1ull << mantissa_size; mantissa_bits |= mantissa_extended_bit; // Now we shift value to the left virtually, with `exponent - bias` steps // we then pretend both it and the big int are extended with virtual zeros. using Word = UnsignedBigInteger::Word; auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD; VERIFY(next_bigint_word + 1 == trimmed_length()); auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD; VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1)); // We will keep the bits which are still valid in the mantissa at the top of mantissa bits. mantissa_bits <<= 64 - (mantissa_size + 1); auto bits_left_in_mantissa = mantissa_size + 1; auto get_next_value_bits = [&](size_t num_bits) -> Word { VERIFY(num_bits < 63); VERIFY(bits_left_in_mantissa > 0); if (num_bits > bits_left_in_mantissa) num_bits = bits_left_in_mantissa; bits_left_in_mantissa -= num_bits; u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits)); // Now shift the bits down to put the most significant bit on the num_bits position // this means the rest will be "virtual" zeros. extracted_bits >>= 32; // Now shift away the used bits and fit the result into a Word. mantissa_bits <<= num_bits; VERIFY(extracted_bits <= NumericLimits::max()); return static_cast(extracted_bits); }; auto bits_in_next_bigint_word = msb_in_top_word_index + 1; while (next_bigint_word > 0 && bits_left_in_mantissa > 0) { Word bigint_word = words()[next_bigint_word - 1]; Word double_word = get_next_value_bits(bits_in_next_bigint_word); // For the first bit we have to align it with the top bit of bigint // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing. double_word >>= 32 - bits_in_next_bigint_word; if (bigint_word < double_word) return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt; if (bigint_word > double_word) return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; --next_bigint_word; bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD; } // If there are still bits left in bigint than any non zero bit means it has greater magnitude. if (next_bigint_word > 0) { VERIFY(bits_left_in_mantissa == 0); while (next_bigint_word > 0) { if (words()[next_bigint_word - 1] != 0) return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt; --next_bigint_word; } } else if (bits_left_in_mantissa > 0) { VERIFY(next_bigint_word == 0); // Similarly if there are still any bits set in the mantissa it has greater magnitude. if (mantissa_bits != 0) return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt; } // Otherwise if both don't have bits left or the rest of the bits are zero they are equal. return CompareResult::DoubleEqualsBigInt; } } ErrorOr AK::Formatter::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value) { if (value.is_negative()) TRY(fmtbuilder.put_string("-"sv)); return Formatter::format(fmtbuilder, value.unsigned_value()); }