ladybird/SharedGraphics/PNGLoader.cpp

338 lines
9.8 KiB
C++

#include <SharedGraphics/PNGLoader.h>
#include <Kernel/NetworkOrdered.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <SharedGraphics/puff.c>
struct PNG_IHDR {
NetworkOrdered<dword> width;
NetworkOrdered<dword> height;
byte bit_depth { 0 };
byte color_type { 0 };
byte compression_method { 0 };
byte filter_method { 0 };
byte interlace_method { 0 };
};
static_assert(sizeof(PNG_IHDR) == 13);
struct Scanline {
byte filter { 0 };
ByteBuffer data;
};
struct PNGLoadingContext {
int width { -1 };
int height { -1 };
byte bit_depth { 0 };
byte color_type { 0 };
byte compression_method { 0 };
byte filter_method { 0 };
byte interlace_method { 0 };
byte bytes_per_pixel { 0 };
bool has_seen_zlib_header { false };
bool has_alpha() const { return color_type & 4; }
Vector<Scanline> scanlines;
RetainPtr<GraphicsBitmap> bitmap;
byte* decompression_buffer { nullptr };
int decompression_buffer_size { 0 };
Vector<byte> compressed_data;
};
class Streamer {
public:
Streamer(const byte* data, int size)
: m_original_data(data)
, m_original_size(size)
, m_data_ptr(data)
, m_size_remaining(size)
{
}
template<typename T>
bool read(T& value)
{
if (m_size_remaining < sizeof(T))
return false;
value = *((NetworkOrdered<T>*)m_data_ptr);
m_data_ptr += sizeof(T);
m_size_remaining -= sizeof(T);
return true;
}
bool read_bytes(byte* buffer, int count)
{
if (m_size_remaining < count)
return false;
memcpy(buffer, m_data_ptr, count);
m_data_ptr += count;
m_size_remaining -= count;
return true;
}
bool at_end() const { return !m_size_remaining; }
private:
const byte* m_original_data;
int m_original_size;
const byte* m_data_ptr;
int m_size_remaining;
};
static RetainPtr<GraphicsBitmap> load_png_impl(const byte*, int);
static bool process_chunk(Streamer&, PNGLoadingContext& context);
RetainPtr<GraphicsBitmap> load_png(const String& path)
{
int fd = open(path.characters(), O_RDONLY);
if (fd < 0) {
perror("open");
return nullptr;
}
struct stat st;
if (fstat(fd, &st) < 0) {
perror("fstat");
if (close(fd) < 0)
perror("close");
return nullptr;
}
if (st.st_size < 8) {
if (close(fd) < 0)
perror("close");
return nullptr;
}
auto* mapped_file = (byte*)mmap(nullptr, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
if (mapped_file == MAP_FAILED) {
if (close(fd) < 0)
perror("close");
return nullptr;
}
auto bitmap = load_png_impl(mapped_file, st.st_size);
if (munmap(mapped_file, st.st_size) < 0)
perror("munmap");
if (close(fd) < 0)
perror("close");
return bitmap;
}
static byte paeth_predictor(int a, int b, int c)
{
int p = a + b - c;
int pa = abs(p - a);
int pb = abs(p - b);
int pc = abs(p - c);
if (pa <= pb && pa <= pc)
return a;
if (pb <= pc)
return b;
return c;
}
static RetainPtr<GraphicsBitmap> load_png_impl(const byte* data, int data_size)
{
const byte* data_ptr = data;
int data_remaining = data_size;
const byte png_header[8] = { 0x89, 'P', 'N', 'G', 13, 10, 26, 10 };
if (memcmp(data, png_header, sizeof(png_header))) {
dbgprintf("Invalid PNG header\n");
return nullptr;
}
dbgprintf("Okay, PNG loaded\n");
PNGLoadingContext context;
data_ptr += sizeof(png_header);
data_remaining -= sizeof(png_header);
Streamer streamer(data_ptr, data_remaining);
while (!streamer.at_end()) {
if (!process_chunk(streamer, context)) {
return nullptr;
}
}
unsigned long srclen = context.compressed_data.size() - 6;
unsigned long destlen = context.decompression_buffer_size;
int ret = puff(context.decompression_buffer, &destlen, context.compressed_data.data() + 2, &srclen);
if (ret < 0)
return nullptr;
context.compressed_data.clear();
{
Streamer streamer(context.decompression_buffer, context.decompression_buffer_size);
for (int y = 0; y < context.height; ++y) {
byte filter;
if (!streamer.read(filter))
return nullptr;
context.scanlines.append({ filter, ByteBuffer::create_uninitialized(context.width * context.bytes_per_pixel) });
auto& scanline_buffer = context.scanlines.last().data;
if (!streamer.read_bytes(scanline_buffer.pointer(), scanline_buffer.size()))
return nullptr;
}
munmap(context.decompression_buffer, context.decompression_buffer_size);
context.decompression_buffer = nullptr;
context.decompression_buffer_size = 0;
}
context.bitmap = GraphicsBitmap::create(GraphicsBitmap::Format::RGBA32, { context.width, context.height });
union [[gnu::packed]] Pixel {
RGBA32 rgba { 0 };
struct {
byte r;
byte g;
byte b;
byte a;
};
};
static_assert(sizeof(Pixel) == 4);
for (int y = 0; y < context.height; ++y) {
auto filter = context.scanlines[y].filter;
switch (context.color_type) {
case 2: {
struct [[gnu::packed]] Triplet { byte r; byte g; byte b; };
auto* triplets = (Triplet*)context.scanlines[y].data.pointer();
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
pixel.r = triplets[i].r;
pixel.g = triplets[i].g;
pixel.b = triplets[i].b;
pixel.a = 0xff;
}
break;
}
case 6:
memcpy(context.bitmap->scanline(y), context.scanlines[y].data.pointer(), context.scanlines[y].data.size());
break;
default:
ASSERT_NOT_REACHED();
break;
}
if (filter == 0)
continue;
for (int i = 0; i < context.width; ++i) {
auto& x = (Pixel&)context.bitmap->scanline(y)[i];
swap(x.r, x.b);
Pixel a;
Pixel b;
Pixel c;
if (i != 0) a.rgba = context.bitmap->scanline(y)[i - 1];
if (y != 0) b.rgba = context.bitmap->scanline(y - 1)[i];
if (y != 0 && i != 0) c.rgba = context.bitmap->scanline(y - 1)[i - 1];
if (filter == 1) {
x.r += a.r;
x.g += a.g;
x.b += a.b;
if (context.has_alpha())
x.a += a.a;
} else if (filter == 2) {
x.r += b.r;
x.g += b.g;
x.b += b.b;
if (context.has_alpha())
x.a += b.a;
} if (filter == 3) {
x.r = x.r + ((a.r + b.r) / 2);
x.g = x.g + ((a.g + b.g) / 2);
x.b = x.b + ((a.b + b.b) / 2);
if (context.has_alpha())
x.a = x.a + ((a.a + b.a) / 2);
} if (filter == 4) {
x.r += paeth_predictor(a.r, b.r, c.r);
x.g += paeth_predictor(a.g, b.g, c.g);
x.b += paeth_predictor(a.b, b.b, c.b);
if (context.has_alpha())
x.a += paeth_predictor(a.a, b.a, c.a);
}
}
}
return context.bitmap;
}
static bool process_IHDR(const ByteBuffer& data, PNGLoadingContext& context)
{
if (data.size() < sizeof(PNG_IHDR))
return false;
auto& ihdr = *(const PNG_IHDR*)data.pointer();
context.width = ihdr.width;
context.height = ihdr.height;
context.bit_depth = ihdr.bit_depth;
context.color_type = ihdr.color_type;
context.compression_method = ihdr.compression_method;
context.filter_method = ihdr.filter_method;
context.interlace_method = ihdr.interlace_method;
switch (context.color_type) {
case 2:
context.bytes_per_pixel = 3;
break;
case 6:
context.bytes_per_pixel = 4;
break;
default:
ASSERT_NOT_REACHED();
}
printf("PNG: %dx%d (%d bpp)\n", context.width, context.height, context.bit_depth);
printf(" Color type: %b\n", context.color_type);
printf(" Interlace type: %b\n", context.interlace_method);
context.decompression_buffer_size = (context.width * context.height * context.bytes_per_pixel + context.height);
context.decompression_buffer = (byte*)mmap(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
return true;
}
static bool process_IDAT(const ByteBuffer& data, PNGLoadingContext& context)
{
context.compressed_data.append(data.pointer(), data.size());
return true;
}
static bool process_chunk(Streamer& streamer, PNGLoadingContext& context)
{
dword chunk_size;
if (!streamer.read(chunk_size)) {
printf("Bail at chunk_size\n");
return false;
}
byte chunk_type[5];
chunk_type[4] = '\0';
if (!streamer.read_bytes(chunk_type, 4)) {
printf("Bail at chunk_type\n");
return false;
}
auto chunk_data = ByteBuffer::create_uninitialized(chunk_size);
if (!streamer.read_bytes(chunk_data.pointer(), chunk_size)) {
printf("Bail at chunk_data\n");
return false;
}
dword chunk_crc;
if (!streamer.read(chunk_crc)) {
printf("Bail at chunk_crc\n");
return false;
}
printf("Chunk type: '%s', size: %u, crc: %x\n", chunk_type, chunk_size, chunk_crc);
if (!strcmp((const char*)chunk_type, "IHDR"))
return process_IHDR(chunk_data, context);
if (!strcmp((const char*)chunk_type, "IDAT"))
return process_IDAT(chunk_data, context);
return true;
}