#include #include #include #include #include #include #include #include #include struct PNG_IHDR { NetworkOrdered width; NetworkOrdered height; byte bit_depth { 0 }; byte color_type { 0 }; byte compression_method { 0 }; byte filter_method { 0 }; byte interlace_method { 0 }; }; static_assert(sizeof(PNG_IHDR) == 13); struct Scanline { byte filter { 0 }; ByteBuffer data; }; struct PNGLoadingContext { int width { -1 }; int height { -1 }; byte bit_depth { 0 }; byte color_type { 0 }; byte compression_method { 0 }; byte filter_method { 0 }; byte interlace_method { 0 }; byte bytes_per_pixel { 0 }; bool has_seen_zlib_header { false }; bool has_alpha() const { return color_type & 4; } Vector scanlines; RetainPtr bitmap; byte* decompression_buffer { nullptr }; int decompression_buffer_size { 0 }; Vector compressed_data; }; class Streamer { public: Streamer(const byte* data, int size) : m_original_data(data) , m_original_size(size) , m_data_ptr(data) , m_size_remaining(size) { } template bool read(T& value) { if (m_size_remaining < sizeof(T)) return false; value = *((NetworkOrdered*)m_data_ptr); m_data_ptr += sizeof(T); m_size_remaining -= sizeof(T); return true; } bool read_bytes(byte* buffer, int count) { if (m_size_remaining < count) return false; memcpy(buffer, m_data_ptr, count); m_data_ptr += count; m_size_remaining -= count; return true; } bool at_end() const { return !m_size_remaining; } private: const byte* m_original_data; int m_original_size; const byte* m_data_ptr; int m_size_remaining; }; static RetainPtr load_png_impl(const byte*, int); static bool process_chunk(Streamer&, PNGLoadingContext& context); RetainPtr load_png(const String& path) { int fd = open(path.characters(), O_RDONLY); if (fd < 0) { perror("open"); return nullptr; } struct stat st; if (fstat(fd, &st) < 0) { perror("fstat"); if (close(fd) < 0) perror("close"); return nullptr; } if (st.st_size < 8) { if (close(fd) < 0) perror("close"); return nullptr; } auto* mapped_file = (byte*)mmap(nullptr, st.st_size, PROT_READ, MAP_SHARED, fd, 0); if (mapped_file == MAP_FAILED) { if (close(fd) < 0) perror("close"); return nullptr; } auto bitmap = load_png_impl(mapped_file, st.st_size); if (munmap(mapped_file, st.st_size) < 0) perror("munmap"); if (close(fd) < 0) perror("close"); return bitmap; } static byte paeth_predictor(int a, int b, int c) { int p = a + b - c; int pa = abs(p - a); int pb = abs(p - b); int pc = abs(p - c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } static RetainPtr load_png_impl(const byte* data, int data_size) { const byte* data_ptr = data; int data_remaining = data_size; const byte png_header[8] = { 0x89, 'P', 'N', 'G', 13, 10, 26, 10 }; if (memcmp(data, png_header, sizeof(png_header))) { dbgprintf("Invalid PNG header\n"); return nullptr; } dbgprintf("Okay, PNG loaded\n"); PNGLoadingContext context; data_ptr += sizeof(png_header); data_remaining -= sizeof(png_header); Streamer streamer(data_ptr, data_remaining); while (!streamer.at_end()) { if (!process_chunk(streamer, context)) { return nullptr; } } unsigned long srclen = context.compressed_data.size() - 6; unsigned long destlen = context.decompression_buffer_size; int ret = puff(context.decompression_buffer, &destlen, context.compressed_data.data() + 2, &srclen); if (ret < 0) return nullptr; context.compressed_data.clear(); { Streamer streamer(context.decompression_buffer, context.decompression_buffer_size); for (int y = 0; y < context.height; ++y) { byte filter; if (!streamer.read(filter)) return nullptr; context.scanlines.append({ filter, ByteBuffer::create_uninitialized(context.width * context.bytes_per_pixel) }); auto& scanline_buffer = context.scanlines.last().data; if (!streamer.read_bytes(scanline_buffer.pointer(), scanline_buffer.size())) return nullptr; } munmap(context.decompression_buffer, context.decompression_buffer_size); context.decompression_buffer = nullptr; context.decompression_buffer_size = 0; } context.bitmap = GraphicsBitmap::create(GraphicsBitmap::Format::RGBA32, { context.width, context.height }); union [[gnu::packed]] Pixel { RGBA32 rgba { 0 }; struct { byte r; byte g; byte b; byte a; }; }; static_assert(sizeof(Pixel) == 4); for (int y = 0; y < context.height; ++y) { auto filter = context.scanlines[y].filter; switch (context.color_type) { case 2: { struct [[gnu::packed]] Triplet { byte r; byte g; byte b; }; auto* triplets = (Triplet*)context.scanlines[y].data.pointer(); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; pixel.a = 0xff; } break; } case 6: memcpy(context.bitmap->scanline(y), context.scanlines[y].data.pointer(), context.scanlines[y].data.size()); break; default: ASSERT_NOT_REACHED(); break; } if (filter == 0) continue; for (int i = 0; i < context.width; ++i) { auto& x = (Pixel&)context.bitmap->scanline(y)[i]; swap(x.r, x.b); Pixel a; Pixel b; Pixel c; if (i != 0) a.rgba = context.bitmap->scanline(y)[i - 1]; if (y != 0) b.rgba = context.bitmap->scanline(y - 1)[i]; if (y != 0 && i != 0) c.rgba = context.bitmap->scanline(y - 1)[i - 1]; if (filter == 1) { x.r += a.r; x.g += a.g; x.b += a.b; if (context.has_alpha()) x.a += a.a; } else if (filter == 2) { x.r += b.r; x.g += b.g; x.b += b.b; if (context.has_alpha()) x.a += b.a; } if (filter == 3) { x.r = x.r + ((a.r + b.r) / 2); x.g = x.g + ((a.g + b.g) / 2); x.b = x.b + ((a.b + b.b) / 2); if (context.has_alpha()) x.a = x.a + ((a.a + b.a) / 2); } if (filter == 4) { x.r += paeth_predictor(a.r, b.r, c.r); x.g += paeth_predictor(a.g, b.g, c.g); x.b += paeth_predictor(a.b, b.b, c.b); if (context.has_alpha()) x.a += paeth_predictor(a.a, b.a, c.a); } } } return context.bitmap; } static bool process_IHDR(const ByteBuffer& data, PNGLoadingContext& context) { if (data.size() < sizeof(PNG_IHDR)) return false; auto& ihdr = *(const PNG_IHDR*)data.pointer(); context.width = ihdr.width; context.height = ihdr.height; context.bit_depth = ihdr.bit_depth; context.color_type = ihdr.color_type; context.compression_method = ihdr.compression_method; context.filter_method = ihdr.filter_method; context.interlace_method = ihdr.interlace_method; switch (context.color_type) { case 2: context.bytes_per_pixel = 3; break; case 6: context.bytes_per_pixel = 4; break; default: ASSERT_NOT_REACHED(); } printf("PNG: %dx%d (%d bpp)\n", context.width, context.height, context.bit_depth); printf(" Color type: %b\n", context.color_type); printf(" Interlace type: %b\n", context.interlace_method); context.decompression_buffer_size = (context.width * context.height * context.bytes_per_pixel + context.height); context.decompression_buffer = (byte*)mmap(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); return true; } static bool process_IDAT(const ByteBuffer& data, PNGLoadingContext& context) { context.compressed_data.append(data.pointer(), data.size()); return true; } static bool process_chunk(Streamer& streamer, PNGLoadingContext& context) { dword chunk_size; if (!streamer.read(chunk_size)) { printf("Bail at chunk_size\n"); return false; } byte chunk_type[5]; chunk_type[4] = '\0'; if (!streamer.read_bytes(chunk_type, 4)) { printf("Bail at chunk_type\n"); return false; } auto chunk_data = ByteBuffer::create_uninitialized(chunk_size); if (!streamer.read_bytes(chunk_data.pointer(), chunk_size)) { printf("Bail at chunk_data\n"); return false; } dword chunk_crc; if (!streamer.read(chunk_crc)) { printf("Bail at chunk_crc\n"); return false; } printf("Chunk type: '%s', size: %u, crc: %x\n", chunk_type, chunk_size, chunk_crc); if (!strcmp((const char*)chunk_type, "IHDR")) return process_IHDR(chunk_data, context); if (!strcmp((const char*)chunk_type, "IDAT")) return process_IDAT(chunk_data, context); return true; }