ladybird/Userland/Libraries/LibWeb/SVG/SVGPathElement.cpp
asynts 3f23a58fa1 Everywhere: Replace a bundle of dbg with dbgln.
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.
2021-01-22 22:14:30 +01:00

658 lines
21 KiB
C++

/*
* Copyright (c) 2020, Matthew Olsson <matthewcolsson@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Debug.h>
#include <AK/StringBuilder.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
#include <LibWeb/DOM/Document.h>
#include <LibWeb/DOM/Event.h>
#include <LibWeb/Layout/SVGPathBox.h>
#include <LibWeb/SVG/SVGPathElement.h>
#include <ctype.h>
namespace Web::SVG {
#ifdef PATH_DEBUG
static void print_instruction(const PathInstruction& instruction)
{
auto& data = instruction.data;
switch (instruction.type) {
case PathInstructionType::Move:
dbg() << "Move (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 2)
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
break;
case PathInstructionType::ClosePath:
dbg() << "ClosePath (absolute=" << instruction.absolute << ")";
break;
case PathInstructionType::Line:
dbg() << "Line (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 2)
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
break;
case PathInstructionType::HorizontalLine:
dbg() << "HorizontalLine (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); ++i)
dbg() << " x=" << data[i];
break;
case PathInstructionType::VerticalLine:
dbg() << "VerticalLine (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); ++i)
dbg() << " y=" << data[i];
break;
case PathInstructionType::Curve:
dbg() << "Curve (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 6)
dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x2=" << data[i + 2] << ", y2=" << data[i + 3] << "), (x=" << data[i + 4] << ", y=" << data[i + 5] << ")";
break;
case PathInstructionType::SmoothCurve:
dbg() << "SmoothCurve (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 4)
dbg() << " (x2=" << data[i] << ", y2=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")";
break;
case PathInstructionType::QuadraticBezierCurve:
dbg() << "QuadraticBezierCurve (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 4)
dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")";
break;
case PathInstructionType::SmoothQuadraticBezierCurve:
dbg() << "SmoothQuadraticBezierCurve (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 2)
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
break;
case PathInstructionType::EllipticalArc:
dbg() << "EllipticalArc (absolute=" << instruction.absolute << ")";
for (size_t i = 0; i < data.size(); i += 7)
dbg() << " (rx=" << data[i] << ", ry=" << data[i + 1] << ") x-axis-rotation=" << data[i + 2] << ", large-arc-flag=" << data[i + 3] << ", sweep-flag=" << data[i + 4] << ", (x=" << data[i + 5] << ", y=" << data[i + 6] << ")";
break;
case PathInstructionType::Invalid:
dbgln("Invalid");
break;
}
}
#endif
PathDataParser::PathDataParser(const String& source)
: m_source(source)
{
}
Vector<PathInstruction> PathDataParser::parse()
{
parse_whitespace();
while (!done())
parse_drawto();
if (!m_instructions.is_empty() && m_instructions[0].type != PathInstructionType::Move)
ASSERT_NOT_REACHED();
return m_instructions;
}
void PathDataParser::parse_drawto()
{
if (match('M') || match('m')) {
parse_moveto();
} else if (match('Z') || match('z')) {
parse_closepath();
} else if (match('L') || match('l')) {
parse_lineto();
} else if (match('H') || match('h')) {
parse_horizontal_lineto();
} else if (match('V') || match('v')) {
parse_vertical_lineto();
} else if (match('C') || match('c')) {
parse_curveto();
} else if (match('S') || match('s')) {
parse_smooth_curveto();
} else if (match('Q') || match('q')) {
parse_quadratic_bezier_curveto();
} else if (match('T') || match('t')) {
parse_smooth_quadratic_bezier_curveto();
} else if (match('A') || match('a')) {
parse_elliptical_arc();
} else {
dbgln("PathDataParser::parse_drawto failed to match: '{}'", ch());
TODO();
}
}
void PathDataParser::parse_moveto()
{
bool absolute = consume() == 'M';
parse_whitespace();
for (auto& pair : parse_coordinate_pair_sequence())
m_instructions.append({ PathInstructionType::Move, absolute, pair });
}
void PathDataParser::parse_closepath()
{
bool absolute = consume() == 'Z';
parse_whitespace();
m_instructions.append({ PathInstructionType::ClosePath, absolute, {} });
}
void PathDataParser::parse_lineto()
{
bool absolute = consume() == 'L';
parse_whitespace();
for (auto& pair : parse_coordinate_pair_sequence())
m_instructions.append({ PathInstructionType::Line, absolute, pair });
}
void PathDataParser::parse_horizontal_lineto()
{
bool absolute = consume() == 'H';
parse_whitespace();
m_instructions.append({ PathInstructionType::HorizontalLine, absolute, parse_coordinate_sequence() });
}
void PathDataParser::parse_vertical_lineto()
{
bool absolute = consume() == 'V';
parse_whitespace();
m_instructions.append({ PathInstructionType::VerticalLine, absolute, parse_coordinate_sequence() });
}
void PathDataParser::parse_curveto()
{
bool absolute = consume() == 'C';
parse_whitespace();
while (true) {
m_instructions.append({ PathInstructionType::Curve, absolute, parse_coordinate_pair_triplet() });
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_coordinate())
break;
}
}
void PathDataParser::parse_smooth_curveto()
{
bool absolute = consume() == 'S';
parse_whitespace();
while (true) {
m_instructions.append({ PathInstructionType::SmoothCurve, absolute, parse_coordinate_pair_double() });
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_coordinate())
break;
}
}
void PathDataParser::parse_quadratic_bezier_curveto()
{
bool absolute = consume() == 'Q';
parse_whitespace();
while (true) {
m_instructions.append({ PathInstructionType::QuadraticBezierCurve, absolute, parse_coordinate_pair_double() });
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_coordinate())
break;
}
}
void PathDataParser::parse_smooth_quadratic_bezier_curveto()
{
bool absolute = consume() == 'T';
parse_whitespace();
while (true) {
m_instructions.append({ PathInstructionType::SmoothQuadraticBezierCurve, absolute, parse_coordinate_pair() });
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_coordinate())
break;
}
}
void PathDataParser::parse_elliptical_arc()
{
bool absolute = consume() == 'A';
parse_whitespace();
while (true) {
m_instructions.append({ PathInstructionType::EllipticalArc, absolute, parse_elliptical_arg_argument() });
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_coordinate())
break;
}
}
float PathDataParser::parse_coordinate()
{
return parse_sign() * parse_number();
}
Vector<float> PathDataParser::parse_coordinate_pair()
{
Vector<float> coordinates;
coordinates.append(parse_coordinate());
if (match_comma_whitespace())
parse_comma_whitespace();
coordinates.append(parse_coordinate());
return coordinates;
}
Vector<float> PathDataParser::parse_coordinate_sequence()
{
Vector<float> sequence;
while (true) {
sequence.append(parse_coordinate());
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_comma_whitespace() && !match_coordinate())
break;
}
return sequence;
}
Vector<Vector<float>> PathDataParser::parse_coordinate_pair_sequence()
{
Vector<Vector<float>> sequence;
while (true) {
sequence.append(parse_coordinate_pair());
if (match_comma_whitespace())
parse_comma_whitespace();
if (!match_comma_whitespace() && !match_coordinate())
break;
}
return sequence;
}
Vector<float> PathDataParser::parse_coordinate_pair_double()
{
Vector<float> coordinates;
coordinates.append(parse_coordinate_pair());
if (match_comma_whitespace())
parse_comma_whitespace();
coordinates.append(parse_coordinate_pair());
return coordinates;
}
Vector<float> PathDataParser::parse_coordinate_pair_triplet()
{
Vector<float> coordinates;
coordinates.append(parse_coordinate_pair());
if (match_comma_whitespace())
parse_comma_whitespace();
coordinates.append(parse_coordinate_pair());
if (match_comma_whitespace())
parse_comma_whitespace();
coordinates.append(parse_coordinate_pair());
return coordinates;
}
Vector<float> PathDataParser::parse_elliptical_arg_argument()
{
Vector<float> numbers;
numbers.append(parse_number());
if (match_comma_whitespace())
parse_comma_whitespace();
numbers.append(parse_number());
if (match_comma_whitespace())
parse_comma_whitespace();
numbers.append(parse_number());
parse_comma_whitespace();
numbers.append(parse_flag());
if (match_comma_whitespace())
parse_comma_whitespace();
numbers.append(parse_flag());
if (match_comma_whitespace())
parse_comma_whitespace();
numbers.append(parse_coordinate_pair());
return numbers;
}
void PathDataParser::parse_whitespace(bool must_match_once)
{
bool matched = false;
while (!done() && match_whitespace()) {
consume();
matched = true;
}
ASSERT(!must_match_once || matched);
}
void PathDataParser::parse_comma_whitespace()
{
if (match(',')) {
consume();
parse_whitespace();
} else {
parse_whitespace(1);
if (match(','))
consume();
parse_whitespace();
}
}
float PathDataParser::parse_fractional_constant()
{
StringBuilder builder;
bool floating_point = false;
while (!done() && isdigit(ch()))
builder.append(consume());
if (match('.')) {
floating_point = true;
builder.append('.');
consume();
while (!done() && isdigit(ch()))
builder.append(consume());
} else {
ASSERT(builder.length() > 0);
}
if (floating_point)
return strtof(builder.to_string().characters(), nullptr);
return builder.to_string().to_int().value();
}
float PathDataParser::parse_number()
{
auto number = parse_fractional_constant();
if (match('e') || match('E'))
TODO();
return number;
}
float PathDataParser::parse_flag()
{
if (!match('0') && !match('1'))
ASSERT_NOT_REACHED();
return consume() - '0';
}
int PathDataParser::parse_sign()
{
if (match('-')) {
consume();
return -1;
}
if (match('+'))
consume();
return 1;
}
bool PathDataParser::match_whitespace() const
{
if (done())
return false;
char c = ch();
return c == 0x9 || c == 0x20 || c == 0xa || c == 0xc || c == 0xd;
}
bool PathDataParser::match_comma_whitespace() const
{
return match_whitespace() || match(',');
}
bool PathDataParser::match_coordinate() const
{
return !done() && (isdigit(ch()) || ch() == '-' || ch() == '+' || ch() == '.');
}
SVGPathElement::SVGPathElement(DOM::Document& document, const QualifiedName& qualified_name)
: SVGGeometryElement(document, qualified_name)
{
}
RefPtr<Layout::Node> SVGPathElement::create_layout_node()
{
auto style = document().style_resolver().resolve_style(*this);
if (style->display() == CSS::Display::None)
return nullptr;
return adopt(*new Layout::SVGPathBox(document(), *this, move(style)));
}
void SVGPathElement::parse_attribute(const FlyString& name, const String& value)
{
SVGGeometryElement::parse_attribute(name, value);
if (name == "d")
m_instructions = PathDataParser(value).parse();
}
Gfx::Path& SVGPathElement::get_path()
{
if (m_path.has_value())
return m_path.value();
Gfx::Path path;
for (auto& instruction : m_instructions) {
auto& absolute = instruction.absolute;
auto& data = instruction.data;
#ifdef PATH_DEBUG
print_instruction(instruction);
#endif
bool clear_last_control_point = true;
switch (instruction.type) {
case PathInstructionType::Move: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.move_to(point);
} else {
ASSERT(!path.segments().is_empty());
path.move_to(point + path.segments().last().point());
}
break;
}
case PathInstructionType::ClosePath:
path.close();
break;
case PathInstructionType::Line: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.line_to(point);
} else {
ASSERT(!path.segments().is_empty());
path.line_to(point + path.segments().last().point());
}
break;
}
case PathInstructionType::HorizontalLine: {
ASSERT(!path.segments().is_empty());
auto last_point = path.segments().last().point();
if (absolute) {
path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
} else {
path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
}
break;
}
case PathInstructionType::VerticalLine: {
ASSERT(!path.segments().is_empty());
auto last_point = path.segments().last().point();
if (absolute) {
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
} else {
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
}
break;
}
case PathInstructionType::EllipticalArc: {
double rx = data[0];
double ry = data[1];
double x_axis_rotation = data[2] * M_DEG2RAD;
double large_arc_flag = data[3];
double sweep_flag = data[4];
double x_axis_rotation_c = cos(x_axis_rotation);
double x_axis_rotation_s = sin(x_axis_rotation);
auto& last_point = path.segments().last().point();
Gfx::FloatPoint next_point;
if (absolute) {
next_point = { data[5], data[6] };
} else {
next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
}
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
path.line_to(next_point);
break;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = (last_point.x() - next_point.x()) / 2.0f;
auto y_avg = (last_point.y() - next_point.y()) / 2.0f;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = pow(x1p, 2.0);
double y1p_sq = pow(y1p, 2.0);
double rx_sq = pow(rx, 2.0);
double ry_sq = pow(ry, 2.0);
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = sqrt(numerator / denominator);
}
if (large_arc_flag == sweep_flag)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (sweep_flag == 0 && theta_delta > 0.0f) {
theta_delta -= M_TAU;
} else if (sweep_flag != 0 && theta_delta < 0) {
theta_delta += M_TAU;
}
path.elliptical_arc_to(next_point, { cx, cy }, { rx, ry }, x_axis_rotation, theta_1, theta_delta);
break;
}
case PathInstructionType::QuadraticBezierCurve: {
clear_last_control_point = false;
Gfx::FloatPoint through = { data[0], data[1] };
Gfx::FloatPoint point = { data[2], data[3] };
if (absolute) {
path.quadratic_bezier_curve_to(through, point);
m_previous_control_point = through;
} else {
ASSERT(!path.segments().is_empty());
auto last_point = path.segments().last().point();
auto control_point = through + last_point;
path.quadratic_bezier_curve_to(control_point, point + last_point);
m_previous_control_point = control_point;
}
break;
}
case PathInstructionType::SmoothQuadraticBezierCurve: {
clear_last_control_point = false;
ASSERT(!path.segments().is_empty());
auto last_point = path.segments().last().point();
if (m_previous_control_point.is_null()) {
m_previous_control_point = last_point;
}
auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
Gfx::FloatPoint end_point = { data[0], data[1] };
if (absolute) {
path.quadratic_bezier_curve_to(control_point, end_point);
} else {
path.quadratic_bezier_curve_to(control_point, end_point + last_point);
}
m_previous_control_point = control_point;
break;
}
case PathInstructionType::Curve:
case PathInstructionType::SmoothCurve:
// Instead of crashing the browser every time we come across an SVG
// with these path instructions, let's just skip them
continue;
case PathInstructionType::Invalid:
ASSERT_NOT_REACHED();
}
if (clear_last_control_point) {
m_previous_control_point = Gfx::FloatPoint {};
}
}
m_path = path;
return m_path.value();
}
}