/* * Copyright (c) 2020, Matthew Olsson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include namespace Web::SVG { #ifdef PATH_DEBUG static void print_instruction(const PathInstruction& instruction) { auto& data = instruction.data; switch (instruction.type) { case PathInstructionType::Move: dbg() << "Move (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 2) dbg() << " x=" << data[i] << ", y=" << data[i + 1]; break; case PathInstructionType::ClosePath: dbg() << "ClosePath (absolute=" << instruction.absolute << ")"; break; case PathInstructionType::Line: dbg() << "Line (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 2) dbg() << " x=" << data[i] << ", y=" << data[i + 1]; break; case PathInstructionType::HorizontalLine: dbg() << "HorizontalLine (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); ++i) dbg() << " x=" << data[i]; break; case PathInstructionType::VerticalLine: dbg() << "VerticalLine (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); ++i) dbg() << " y=" << data[i]; break; case PathInstructionType::Curve: dbg() << "Curve (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 6) dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x2=" << data[i + 2] << ", y2=" << data[i + 3] << "), (x=" << data[i + 4] << ", y=" << data[i + 5] << ")"; break; case PathInstructionType::SmoothCurve: dbg() << "SmoothCurve (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 4) dbg() << " (x2=" << data[i] << ", y2=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")"; break; case PathInstructionType::QuadraticBezierCurve: dbg() << "QuadraticBezierCurve (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 4) dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")"; break; case PathInstructionType::SmoothQuadraticBezierCurve: dbg() << "SmoothQuadraticBezierCurve (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 2) dbg() << " x=" << data[i] << ", y=" << data[i + 1]; break; case PathInstructionType::EllipticalArc: dbg() << "EllipticalArc (absolute=" << instruction.absolute << ")"; for (size_t i = 0; i < data.size(); i += 7) dbg() << " (rx=" << data[i] << ", ry=" << data[i + 1] << ") x-axis-rotation=" << data[i + 2] << ", large-arc-flag=" << data[i + 3] << ", sweep-flag=" << data[i + 4] << ", (x=" << data[i + 5] << ", y=" << data[i + 6] << ")"; break; case PathInstructionType::Invalid: dbgln("Invalid"); break; } } #endif PathDataParser::PathDataParser(const String& source) : m_source(source) { } Vector PathDataParser::parse() { parse_whitespace(); while (!done()) parse_drawto(); if (!m_instructions.is_empty() && m_instructions[0].type != PathInstructionType::Move) ASSERT_NOT_REACHED(); return m_instructions; } void PathDataParser::parse_drawto() { if (match('M') || match('m')) { parse_moveto(); } else if (match('Z') || match('z')) { parse_closepath(); } else if (match('L') || match('l')) { parse_lineto(); } else if (match('H') || match('h')) { parse_horizontal_lineto(); } else if (match('V') || match('v')) { parse_vertical_lineto(); } else if (match('C') || match('c')) { parse_curveto(); } else if (match('S') || match('s')) { parse_smooth_curveto(); } else if (match('Q') || match('q')) { parse_quadratic_bezier_curveto(); } else if (match('T') || match('t')) { parse_smooth_quadratic_bezier_curveto(); } else if (match('A') || match('a')) { parse_elliptical_arc(); } else { dbgln("PathDataParser::parse_drawto failed to match: '{}'", ch()); TODO(); } } void PathDataParser::parse_moveto() { bool absolute = consume() == 'M'; parse_whitespace(); for (auto& pair : parse_coordinate_pair_sequence()) m_instructions.append({ PathInstructionType::Move, absolute, pair }); } void PathDataParser::parse_closepath() { bool absolute = consume() == 'Z'; parse_whitespace(); m_instructions.append({ PathInstructionType::ClosePath, absolute, {} }); } void PathDataParser::parse_lineto() { bool absolute = consume() == 'L'; parse_whitespace(); for (auto& pair : parse_coordinate_pair_sequence()) m_instructions.append({ PathInstructionType::Line, absolute, pair }); } void PathDataParser::parse_horizontal_lineto() { bool absolute = consume() == 'H'; parse_whitespace(); m_instructions.append({ PathInstructionType::HorizontalLine, absolute, parse_coordinate_sequence() }); } void PathDataParser::parse_vertical_lineto() { bool absolute = consume() == 'V'; parse_whitespace(); m_instructions.append({ PathInstructionType::VerticalLine, absolute, parse_coordinate_sequence() }); } void PathDataParser::parse_curveto() { bool absolute = consume() == 'C'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::Curve, absolute, parse_coordinate_pair_triplet() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_smooth_curveto() { bool absolute = consume() == 'S'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::SmoothCurve, absolute, parse_coordinate_pair_double() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_quadratic_bezier_curveto() { bool absolute = consume() == 'Q'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::QuadraticBezierCurve, absolute, parse_coordinate_pair_double() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_smooth_quadratic_bezier_curveto() { bool absolute = consume() == 'T'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::SmoothQuadraticBezierCurve, absolute, parse_coordinate_pair() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } void PathDataParser::parse_elliptical_arc() { bool absolute = consume() == 'A'; parse_whitespace(); while (true) { m_instructions.append({ PathInstructionType::EllipticalArc, absolute, parse_elliptical_arg_argument() }); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_coordinate()) break; } } float PathDataParser::parse_coordinate() { return parse_sign() * parse_number(); } Vector PathDataParser::parse_coordinate_pair() { Vector coordinates; coordinates.append(parse_coordinate()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate()); return coordinates; } Vector PathDataParser::parse_coordinate_sequence() { Vector sequence; while (true) { sequence.append(parse_coordinate()); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_comma_whitespace() && !match_coordinate()) break; } return sequence; } Vector> PathDataParser::parse_coordinate_pair_sequence() { Vector> sequence; while (true) { sequence.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); if (!match_comma_whitespace() && !match_coordinate()) break; } return sequence; } Vector PathDataParser::parse_coordinate_pair_double() { Vector coordinates; coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); return coordinates; } Vector PathDataParser::parse_coordinate_pair_triplet() { Vector coordinates; coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); if (match_comma_whitespace()) parse_comma_whitespace(); coordinates.append(parse_coordinate_pair()); return coordinates; } Vector PathDataParser::parse_elliptical_arg_argument() { Vector numbers; numbers.append(parse_number()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_number()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_number()); parse_comma_whitespace(); numbers.append(parse_flag()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_flag()); if (match_comma_whitespace()) parse_comma_whitespace(); numbers.append(parse_coordinate_pair()); return numbers; } void PathDataParser::parse_whitespace(bool must_match_once) { bool matched = false; while (!done() && match_whitespace()) { consume(); matched = true; } ASSERT(!must_match_once || matched); } void PathDataParser::parse_comma_whitespace() { if (match(',')) { consume(); parse_whitespace(); } else { parse_whitespace(1); if (match(',')) consume(); parse_whitespace(); } } float PathDataParser::parse_fractional_constant() { StringBuilder builder; bool floating_point = false; while (!done() && isdigit(ch())) builder.append(consume()); if (match('.')) { floating_point = true; builder.append('.'); consume(); while (!done() && isdigit(ch())) builder.append(consume()); } else { ASSERT(builder.length() > 0); } if (floating_point) return strtof(builder.to_string().characters(), nullptr); return builder.to_string().to_int().value(); } float PathDataParser::parse_number() { auto number = parse_fractional_constant(); if (match('e') || match('E')) TODO(); return number; } float PathDataParser::parse_flag() { if (!match('0') && !match('1')) ASSERT_NOT_REACHED(); return consume() - '0'; } int PathDataParser::parse_sign() { if (match('-')) { consume(); return -1; } if (match('+')) consume(); return 1; } bool PathDataParser::match_whitespace() const { if (done()) return false; char c = ch(); return c == 0x9 || c == 0x20 || c == 0xa || c == 0xc || c == 0xd; } bool PathDataParser::match_comma_whitespace() const { return match_whitespace() || match(','); } bool PathDataParser::match_coordinate() const { return !done() && (isdigit(ch()) || ch() == '-' || ch() == '+' || ch() == '.'); } SVGPathElement::SVGPathElement(DOM::Document& document, const QualifiedName& qualified_name) : SVGGeometryElement(document, qualified_name) { } RefPtr SVGPathElement::create_layout_node() { auto style = document().style_resolver().resolve_style(*this); if (style->display() == CSS::Display::None) return nullptr; return adopt(*new Layout::SVGPathBox(document(), *this, move(style))); } void SVGPathElement::parse_attribute(const FlyString& name, const String& value) { SVGGeometryElement::parse_attribute(name, value); if (name == "d") m_instructions = PathDataParser(value).parse(); } Gfx::Path& SVGPathElement::get_path() { if (m_path.has_value()) return m_path.value(); Gfx::Path path; for (auto& instruction : m_instructions) { auto& absolute = instruction.absolute; auto& data = instruction.data; #ifdef PATH_DEBUG print_instruction(instruction); #endif bool clear_last_control_point = true; switch (instruction.type) { case PathInstructionType::Move: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.move_to(point); } else { ASSERT(!path.segments().is_empty()); path.move_to(point + path.segments().last().point()); } break; } case PathInstructionType::ClosePath: path.close(); break; case PathInstructionType::Line: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.line_to(point); } else { ASSERT(!path.segments().is_empty()); path.line_to(point + path.segments().last().point()); } break; } case PathInstructionType::HorizontalLine: { ASSERT(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (absolute) { path.line_to(Gfx::FloatPoint { data[0], last_point.y() }); } else { path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() }); } break; } case PathInstructionType::VerticalLine: { ASSERT(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (absolute) { path.line_to(Gfx::FloatPoint { last_point.x(), data[0] }); } else { path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() }); } break; } case PathInstructionType::EllipticalArc: { double rx = data[0]; double ry = data[1]; double x_axis_rotation = data[2] * M_DEG2RAD; double large_arc_flag = data[3]; double sweep_flag = data[4]; double x_axis_rotation_c = cos(x_axis_rotation); double x_axis_rotation_s = sin(x_axis_rotation); auto& last_point = path.segments().last().point(); Gfx::FloatPoint next_point; if (absolute) { next_point = { data[5], data[6] }; } else { next_point = { data[5] + last_point.x(), data[6] + last_point.y() }; } // Step 1 of out-of-range radii correction if (rx == 0.0 || ry == 0.0) { path.line_to(next_point); break; } // Step 2 of out-of-range radii correction if (rx < 0) rx *= -1.0; if (ry < 0) ry *= -1.0; // Find (cx, cy), theta_1, theta_delta // Step 1: Compute (x1', y1') auto x_avg = (last_point.x() - next_point.x()) / 2.0f; auto y_avg = (last_point.y() - next_point.y()) / 2.0f; auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg; auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg; // Step 2: Compute (cx', cy') double x1p_sq = pow(x1p, 2.0); double y1p_sq = pow(y1p, 2.0); double rx_sq = pow(rx, 2.0); double ry_sq = pow(ry, 2.0); // Step 3 of out-of-range radii correction double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq; double multiplier; if (lambda > 1.0) { auto lambda_sqrt = sqrt(lambda); rx *= lambda_sqrt; ry *= lambda_sqrt; multiplier = 0.0; } else { double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq; double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq; multiplier = sqrt(numerator / denominator); } if (large_arc_flag == sweep_flag) multiplier *= -1.0; double cxp = multiplier * rx * y1p / ry; double cyp = multiplier * -ry * x1p / rx; // Step 3: Compute (cx, cy) from (cx', cy') x_avg = (last_point.x() + next_point.x()) / 2.0f; y_avg = (last_point.y() + next_point.y()) / 2.0f; double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg; double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg; double theta_1 = atan2((y1p - cyp) / ry, (x1p - cxp) / rx); double theta_2 = atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx); auto theta_delta = theta_2 - theta_1; if (sweep_flag == 0 && theta_delta > 0.0f) { theta_delta -= M_TAU; } else if (sweep_flag != 0 && theta_delta < 0) { theta_delta += M_TAU; } path.elliptical_arc_to(next_point, { cx, cy }, { rx, ry }, x_axis_rotation, theta_1, theta_delta); break; } case PathInstructionType::QuadraticBezierCurve: { clear_last_control_point = false; Gfx::FloatPoint through = { data[0], data[1] }; Gfx::FloatPoint point = { data[2], data[3] }; if (absolute) { path.quadratic_bezier_curve_to(through, point); m_previous_control_point = through; } else { ASSERT(!path.segments().is_empty()); auto last_point = path.segments().last().point(); auto control_point = through + last_point; path.quadratic_bezier_curve_to(control_point, point + last_point); m_previous_control_point = control_point; } break; } case PathInstructionType::SmoothQuadraticBezierCurve: { clear_last_control_point = false; ASSERT(!path.segments().is_empty()); auto last_point = path.segments().last().point(); if (m_previous_control_point.is_null()) { m_previous_control_point = last_point; } auto dx_end_control = last_point.dx_relative_to(m_previous_control_point); auto dy_end_control = last_point.dy_relative_to(m_previous_control_point); auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control }; Gfx::FloatPoint end_point = { data[0], data[1] }; if (absolute) { path.quadratic_bezier_curve_to(control_point, end_point); } else { path.quadratic_bezier_curve_to(control_point, end_point + last_point); } m_previous_control_point = control_point; break; } case PathInstructionType::Curve: case PathInstructionType::SmoothCurve: // Instead of crashing the browser every time we come across an SVG // with these path instructions, let's just skip them continue; case PathInstructionType::Invalid: ASSERT_NOT_REACHED(); } if (clear_last_control_point) { m_previous_control_point = Gfx::FloatPoint {}; } } m_path = path; return m_path.value(); } }