2432 lines
108 KiB
C++
2432 lines
108 KiB
C++
/*
|
||
* Copyright (c) 2024, Nico Weber <thakis@chromium.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <AK/Debug.h>
|
||
#include <AK/Utf16View.h>
|
||
#include <LibGfx/ImageFormats/CCITTDecoder.h>
|
||
#include <LibGfx/ImageFormats/JBIG2Loader.h>
|
||
#include <LibTextCodec/Decoder.h>
|
||
|
||
// Spec: ITU-T_T_88__08_2018.pdf in the zip file here:
|
||
// https://www.itu.int/rec/T-REC-T.88-201808-I
|
||
// Annex H has a datastream example.
|
||
|
||
namespace Gfx {
|
||
|
||
namespace JBIG2 {
|
||
|
||
// Table E.1 – Qe values and probability estimation process
|
||
// See also E.1.2 Coding conventions and approximations
|
||
// and E.2.5 Probability estimation.
|
||
struct QeEntry {
|
||
u16 qe; // Sub-interval for the less probable symbol.
|
||
u16 nmps; // Next index if the more probable symbol is decoded
|
||
u16 nlps; // Next index if the less probable symbol is decoded
|
||
u16 switch_flag; // See second-to-last paragraph in E.1.2.
|
||
};
|
||
constexpr auto qe_table = to_array<QeEntry>({
|
||
{ 0x5601, 1, 1, 1 },
|
||
{ 0x3401, 2, 6, 0 },
|
||
{ 0x1801, 3, 9, 0 },
|
||
{ 0x0AC1, 4, 12, 0 },
|
||
{ 0x0521, 5, 29, 0 },
|
||
{ 0x0221, 38, 33, 0 },
|
||
{ 0x5601, 7, 6, 1 },
|
||
{ 0x5401, 8, 14, 0 },
|
||
{ 0x4801, 9, 14, 0 },
|
||
{ 0x3801, 10, 14, 0 },
|
||
{ 0x3001, 11, 17, 0 },
|
||
{ 0x2401, 12, 18, 0 },
|
||
{ 0x1C01, 13, 20, 0 },
|
||
{ 0x1601, 29, 21, 0 },
|
||
{ 0x5601, 15, 14, 1 },
|
||
{ 0x5401, 16, 14, 0 },
|
||
{ 0x5101, 17, 15, 0 },
|
||
{ 0x4801, 18, 16, 0 },
|
||
{ 0x3801, 19, 17, 0 },
|
||
{ 0x3401, 20, 18, 0 },
|
||
{ 0x3001, 21, 19, 0 },
|
||
{ 0x2801, 22, 19, 0 },
|
||
{ 0x2401, 23, 20, 0 },
|
||
{ 0x2201, 24, 21, 0 },
|
||
{ 0x1C01, 25, 22, 0 },
|
||
{ 0x1801, 26, 23, 0 },
|
||
{ 0x1601, 27, 24, 0 },
|
||
{ 0x1401, 28, 25, 0 },
|
||
{ 0x1201, 29, 26, 0 },
|
||
{ 0x1101, 30, 27, 0 },
|
||
{ 0x0AC1, 31, 28, 0 },
|
||
{ 0x09C1, 32, 29, 0 },
|
||
{ 0x08A1, 33, 30, 0 },
|
||
{ 0x0521, 34, 31, 0 },
|
||
{ 0x0441, 35, 32, 0 },
|
||
{ 0x02A1, 36, 33, 0 },
|
||
{ 0x0221, 37, 34, 0 },
|
||
{ 0x0141, 38, 35, 0 },
|
||
{ 0x0111, 39, 36, 0 },
|
||
{ 0x0085, 40, 37, 0 },
|
||
{ 0x0049, 41, 38, 0 },
|
||
{ 0x0025, 42, 39, 0 },
|
||
{ 0x0015, 43, 40, 0 },
|
||
{ 0x0009, 44, 41, 0 },
|
||
{ 0x0005, 45, 42, 0 },
|
||
{ 0x0001, 45, 43, 0 },
|
||
{ 0x5601, 46, 46, 0 },
|
||
});
|
||
|
||
ErrorOr<ArithmeticDecoder> ArithmeticDecoder::initialize(ReadonlyBytes data)
|
||
{
|
||
ArithmeticDecoder decoder { data };
|
||
decoder.INITDEC();
|
||
return decoder;
|
||
}
|
||
|
||
bool ArithmeticDecoder::get_next_bit(Context& context)
|
||
{
|
||
CX = &context;
|
||
// Useful for comparing to Table H.1 – Encoder and decoder trace data.
|
||
// dbg("I={} MPS={} A={:#x} C={:#x} CT={} B={:#x}", I(CX), MPS(CX), A, C, CT, B());
|
||
u8 D = DECODE();
|
||
// dbgln(" -> D={}", D);
|
||
return D;
|
||
}
|
||
|
||
u16 ArithmeticDecoder::Qe(u16 index) { return qe_table[index].qe; }
|
||
u8 ArithmeticDecoder::NMPS(u16 index) { return qe_table[index].nmps; }
|
||
u8 ArithmeticDecoder::NLPS(u16 index) { return qe_table[index].nlps; }
|
||
u8 ArithmeticDecoder::SWITCH(u16 index) { return qe_table[index].switch_flag; }
|
||
|
||
u8 ArithmeticDecoder::B(size_t offset) const
|
||
{
|
||
// E.2.10 Minimization of the compressed data
|
||
// "the convention is used in the decoder that when a marker code is encountered,
|
||
// 1-bits (without bit stuffing) are supplied to the decoder until the coding interval is complete."
|
||
if (BP + offset >= m_data.size())
|
||
return 0xFF;
|
||
return m_data[BP + offset];
|
||
}
|
||
|
||
void ArithmeticDecoder::INITDEC()
|
||
{
|
||
// E.3.5 Initialization of the decoder (INITDEC)
|
||
// Figure G.1 – Initialization of the software conventions decoder
|
||
|
||
// "BP, the pointer to the compressed data, is initialized to BPST (pointing to the first compressed byte)."
|
||
auto const BPST = 0;
|
||
BP = BPST;
|
||
C = (B() ^ 0xFF) << 16;
|
||
|
||
BYTEIN();
|
||
|
||
C = C << 7;
|
||
CT = CT - 7;
|
||
A = 0x8000;
|
||
}
|
||
|
||
u8 ArithmeticDecoder::DECODE()
|
||
{
|
||
// E.3.2 Decoding a decision (DECODE)
|
||
// Figure G.2 – Decoding an MPS or an LPS in the software-conventions decoder
|
||
u8 D;
|
||
A = A - Qe(I(CX));
|
||
if (C < ((u32)A << 16)) { // `(C_high < A)` in spec
|
||
if ((A & 0x8000) == 0) {
|
||
D = MPS_EXCHANGE();
|
||
RENORMD();
|
||
} else {
|
||
D = MPS(CX);
|
||
}
|
||
} else {
|
||
C = C - ((u32)A << 16); // `C_high = C_high - A` in spec
|
||
D = LPS_EXCHANGE();
|
||
RENORMD();
|
||
}
|
||
return D;
|
||
}
|
||
|
||
u8 ArithmeticDecoder::MPS_EXCHANGE()
|
||
{
|
||
// Figure E.16 – Decoder MPS path conditional exchange procedure
|
||
u8 D;
|
||
if (A < Qe(I(CX))) {
|
||
D = 1 - MPS(CX);
|
||
if (SWITCH(I(CX)) == 1) {
|
||
MPS(CX) = 1 - MPS(CX);
|
||
}
|
||
I(CX) = NLPS(I(CX));
|
||
} else {
|
||
D = MPS(CX);
|
||
I(CX) = NMPS(I(CX));
|
||
}
|
||
return D;
|
||
}
|
||
|
||
u8 ArithmeticDecoder::LPS_EXCHANGE()
|
||
{
|
||
// Figure E.17 – Decoder LPS path conditional exchange procedure
|
||
u8 D;
|
||
if (A < Qe(I(CX))) {
|
||
A = Qe(I(CX));
|
||
D = MPS(CX);
|
||
I(CX) = NMPS(I(CX));
|
||
} else {
|
||
A = Qe(I(CX));
|
||
D = 1 - MPS(CX);
|
||
if (SWITCH(I(CX)) == 1) {
|
||
MPS(CX) = 1 - MPS(CX);
|
||
}
|
||
I(CX) = NLPS(I(CX));
|
||
}
|
||
return D;
|
||
}
|
||
|
||
void ArithmeticDecoder::RENORMD()
|
||
{
|
||
// E.3.3 Renormalization in the decoder (RENORMD)
|
||
// Figure E.18 – Decoder renormalization procedure
|
||
do {
|
||
if (CT == 0)
|
||
BYTEIN();
|
||
A = A << 1;
|
||
C = C << 1;
|
||
CT = CT - 1;
|
||
} while ((A & 0x8000) == 0);
|
||
}
|
||
|
||
void ArithmeticDecoder::BYTEIN()
|
||
{
|
||
// E.3.4 Compressed data input (BYTEIN)
|
||
// Figure G.3 – Inserting a new byte into the C register in the software-conventions decoder
|
||
if (B() == 0xFF) {
|
||
if (B(1) > 0x8F) {
|
||
CT = 8;
|
||
} else {
|
||
BP = BP + 1;
|
||
C = C + 0xFE00 - (B() << 9);
|
||
CT = 7;
|
||
}
|
||
} else {
|
||
BP = BP + 1;
|
||
C = C + 0xFF00 - (B() << 8);
|
||
CT = 8;
|
||
}
|
||
}
|
||
|
||
// Annex A, Arithmetic integer decoding procedure
|
||
class ArithmeticIntegerDecoder {
|
||
public:
|
||
ArithmeticIntegerDecoder(ArithmeticDecoder&);
|
||
|
||
// A.2 Procedure for decoding values (except IAID)
|
||
// Returns OptionalNone for OOB.
|
||
Optional<i32> decode();
|
||
|
||
private:
|
||
ArithmeticDecoder& m_decoder;
|
||
u16 PREV { 0 };
|
||
Vector<ArithmeticDecoder::Context> contexts;
|
||
};
|
||
|
||
ArithmeticIntegerDecoder::ArithmeticIntegerDecoder(ArithmeticDecoder& decoder)
|
||
: m_decoder(decoder)
|
||
{
|
||
contexts.resize(1 << 9);
|
||
}
|
||
|
||
Optional<int> ArithmeticIntegerDecoder::decode()
|
||
{
|
||
// A.2 Procedure for decoding values (except IAID)
|
||
// "1) Set:
|
||
// PREV = 1"
|
||
u16 PREV = 1;
|
||
|
||
// "2) Follow the flowchart in Figure A.1. Decode each bit with CX equal to "IAx + PREV" where "IAx" represents the identifier
|
||
// of the current arithmetic integer decoding procedure, "+" represents concatenation, and the rightmost 9 bits of PREV are used."
|
||
auto decode_bit = [&]() {
|
||
bool D = m_decoder.get_next_bit(contexts[PREV & 0x1FF]);
|
||
// "3) After each bit is decoded:
|
||
// If PREV < 256 set:
|
||
// PREV = (PREV << 1) OR D
|
||
// Otherwise set:
|
||
// PREV = (((PREV << 1) OR D) AND 511) OR 256
|
||
// where D represents the value of the just-decoded bit.
|
||
if (PREV < 256)
|
||
PREV = (PREV << 1) | (u16)D;
|
||
else
|
||
PREV = (((PREV << 1) | (u16)D) & 511) | 256;
|
||
return D;
|
||
};
|
||
|
||
auto decode_bits = [&](int n) {
|
||
u32 result = 0;
|
||
for (int i = 0; i < n; ++i)
|
||
result = (result << 1) | decode_bit();
|
||
return result;
|
||
};
|
||
|
||
// Figure A.1 – Flowchart for the integer arithmetic decoding procedures (except IAID)
|
||
u8 S = decode_bit();
|
||
u32 V;
|
||
if (!decode_bit())
|
||
V = decode_bits(2);
|
||
else if (!decode_bit())
|
||
V = decode_bits(4) + 4;
|
||
else if (!decode_bit())
|
||
V = decode_bits(6) + 20;
|
||
else if (!decode_bit())
|
||
V = decode_bits(8) + 84;
|
||
else if (!decode_bit())
|
||
V = decode_bits(12) + 340;
|
||
else
|
||
V = decode_bits(32) + 4436;
|
||
|
||
// "4) The sequence of bits decoded, interpreted according to Table A.1, gives the value that is the result of this invocation
|
||
// of the integer arithmetic decoding procedure."
|
||
if (S == 1 && V == 0)
|
||
return {};
|
||
return S ? -V : V;
|
||
}
|
||
|
||
class ArithmeticIntegerIDDecoder {
|
||
public:
|
||
ArithmeticIntegerIDDecoder(ArithmeticDecoder&, u32 code_length);
|
||
|
||
// A.3 The IAID decoding procedure
|
||
u32 decode();
|
||
|
||
private:
|
||
ArithmeticDecoder& m_decoder;
|
||
u32 m_code_length { 0 };
|
||
Vector<ArithmeticDecoder::Context> contexts;
|
||
};
|
||
|
||
ArithmeticIntegerIDDecoder::ArithmeticIntegerIDDecoder(ArithmeticDecoder& decoder, u32 code_length)
|
||
: m_decoder(decoder)
|
||
, m_code_length(code_length)
|
||
{
|
||
contexts.resize(1 << (code_length + 1));
|
||
}
|
||
|
||
u32 ArithmeticIntegerIDDecoder::decode()
|
||
{
|
||
// A.3 The IAID decoding procedure
|
||
u32 prev = 1;
|
||
for (u8 i = 0; i < m_code_length; ++i) {
|
||
bool bit = m_decoder.get_next_bit(contexts[prev]);
|
||
prev = (prev << 1) | bit;
|
||
}
|
||
prev = prev - (1 << m_code_length);
|
||
return prev;
|
||
}
|
||
|
||
}
|
||
|
||
static u8 number_of_context_bits_for_template(u8 template_)
|
||
{
|
||
if (template_ == 0)
|
||
return 16;
|
||
if (template_ == 1)
|
||
return 13;
|
||
VERIFY(template_ == 2 || template_ == 3);
|
||
return 10;
|
||
}
|
||
|
||
// JBIG2 spec, Annex D, D.4.1 ID string
|
||
static constexpr u8 id_string[] = { 0x97, 0x4A, 0x42, 0x32, 0x0D, 0x0A, 0x1A, 0x0A };
|
||
|
||
// 7.3 Segment types
|
||
enum SegmentType {
|
||
SymbolDictionary = 0,
|
||
IntermediateTextRegion = 4,
|
||
ImmediateTextRegion = 6,
|
||
ImmediateLosslessTextRegion = 7,
|
||
PatternDictionary = 16,
|
||
IntermediateHalftoneRegion = 20,
|
||
ImmediateHalftoneRegion = 22,
|
||
ImmediateLosslessHalftoneRegion = 23,
|
||
IntermediateGenericRegion = 36,
|
||
ImmediateGenericRegion = 38,
|
||
ImmediateLosslessGenericRegion = 39,
|
||
IntermediateGenericRefinementRegion = 40,
|
||
ImmediateGenericRefinementRegion = 42,
|
||
ImmediateLosslessGenericRefinementRegion = 43,
|
||
PageInformation = 48,
|
||
EndOfPage = 49,
|
||
EndOfStripe = 50,
|
||
EndOfFile = 51,
|
||
Profiles = 52,
|
||
Tables = 53,
|
||
ColorPalette = 54,
|
||
Extension = 62,
|
||
};
|
||
|
||
// Annex D
|
||
enum class Organization {
|
||
// D.1 Sequential organization
|
||
Sequential,
|
||
|
||
// D.2 Random-access organization
|
||
RandomAccess,
|
||
|
||
// D.3 Embedded organization
|
||
Embedded,
|
||
};
|
||
|
||
struct SegmentHeader {
|
||
u32 segment_number { 0 };
|
||
SegmentType type { SegmentType::Extension };
|
||
Vector<u32> referred_to_segment_numbers;
|
||
|
||
// 7.2.6 Segment page association
|
||
// "The first page must be numbered "1". This field may contain a value of zero; this value indicates that this segment is not associated with any page."
|
||
u32 page_association { 0 };
|
||
|
||
Optional<u32> data_length;
|
||
};
|
||
|
||
class BitBuffer {
|
||
public:
|
||
static ErrorOr<NonnullOwnPtr<BitBuffer>> create(size_t width, size_t height);
|
||
bool get_bit(size_t x, size_t y) const;
|
||
void set_bit(size_t x, size_t y, bool b);
|
||
void fill(bool b);
|
||
|
||
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> to_gfx_bitmap() const;
|
||
ErrorOr<ByteBuffer> to_byte_buffer() const;
|
||
|
||
size_t width() const { return m_width; }
|
||
size_t height() const { return m_height; }
|
||
|
||
private:
|
||
BitBuffer(ByteBuffer, size_t width, size_t height, size_t pitch);
|
||
|
||
ByteBuffer m_bits;
|
||
size_t m_width { 0 };
|
||
size_t m_height { 0 };
|
||
size_t m_pitch { 0 };
|
||
};
|
||
|
||
ErrorOr<NonnullOwnPtr<BitBuffer>> BitBuffer::create(size_t width, size_t height)
|
||
{
|
||
size_t pitch = ceil_div(width, 8ull);
|
||
auto bits = TRY(ByteBuffer::create_uninitialized(pitch * height));
|
||
return adopt_nonnull_own_or_enomem(new (nothrow) BitBuffer(move(bits), width, height, pitch));
|
||
}
|
||
|
||
bool BitBuffer::get_bit(size_t x, size_t y) const
|
||
{
|
||
VERIFY(x < m_width);
|
||
VERIFY(y < m_height);
|
||
size_t byte_offset = x / 8;
|
||
size_t bit_offset = x % 8;
|
||
u8 byte = m_bits[y * m_pitch + byte_offset];
|
||
byte = (byte >> (8 - 1 - bit_offset)) & 1;
|
||
return byte != 0;
|
||
}
|
||
|
||
void BitBuffer::set_bit(size_t x, size_t y, bool b)
|
||
{
|
||
VERIFY(x < m_width);
|
||
VERIFY(y < m_height);
|
||
size_t byte_offset = x / 8;
|
||
size_t bit_offset = x % 8;
|
||
u8 byte = m_bits[y * m_pitch + byte_offset];
|
||
u8 mask = 1u << (8 - 1 - bit_offset);
|
||
if (b)
|
||
byte |= mask;
|
||
else
|
||
byte &= ~mask;
|
||
m_bits[y * m_pitch + byte_offset] = byte;
|
||
}
|
||
|
||
void BitBuffer::fill(bool b)
|
||
{
|
||
u8 fill_byte = b ? 0xff : 0;
|
||
for (auto& byte : m_bits.bytes())
|
||
byte = fill_byte;
|
||
}
|
||
|
||
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> BitBuffer::to_gfx_bitmap() const
|
||
{
|
||
auto bitmap = TRY(Gfx::Bitmap::create(Gfx::BitmapFormat::BGRx8888, { m_width, m_height }));
|
||
for (size_t y = 0; y < m_height; ++y) {
|
||
for (size_t x = 0; x < m_width; ++x) {
|
||
auto color = get_bit(x, y) ? Color::Black : Color::White;
|
||
bitmap->set_pixel(x, y, color);
|
||
}
|
||
}
|
||
return bitmap;
|
||
}
|
||
|
||
ErrorOr<ByteBuffer> BitBuffer::to_byte_buffer() const
|
||
{
|
||
return ByteBuffer::copy(m_bits);
|
||
}
|
||
|
||
BitBuffer::BitBuffer(ByteBuffer bits, size_t width, size_t height, size_t pitch)
|
||
: m_bits(move(bits))
|
||
, m_width(width)
|
||
, m_height(height)
|
||
, m_pitch(pitch)
|
||
{
|
||
}
|
||
|
||
class Symbol : public RefCounted<Symbol> {
|
||
public:
|
||
static NonnullRefPtr<Symbol> create(NonnullOwnPtr<BitBuffer> bitmap)
|
||
{
|
||
return adopt_ref(*new Symbol(move(bitmap)));
|
||
}
|
||
|
||
BitBuffer const& bitmap() const { return *m_bitmap; }
|
||
|
||
private:
|
||
Symbol(NonnullOwnPtr<BitBuffer> bitmap)
|
||
: m_bitmap(move(bitmap))
|
||
{
|
||
}
|
||
|
||
NonnullOwnPtr<BitBuffer> m_bitmap;
|
||
};
|
||
|
||
struct SegmentData {
|
||
SegmentHeader header;
|
||
ReadonlyBytes data;
|
||
|
||
// Set on dictionary segments after they've been decoded.
|
||
Optional<Vector<NonnullRefPtr<Symbol>>> symbols;
|
||
};
|
||
|
||
// 7.4.8.5 Page segment flags
|
||
enum class CombinationOperator {
|
||
Or = 0,
|
||
And = 1,
|
||
Xor = 2,
|
||
XNor = 3,
|
||
Replace = 4,
|
||
};
|
||
|
||
static void composite_bitbuffer(BitBuffer& out, BitBuffer const& bitmap, Gfx::IntPoint position, CombinationOperator operator_)
|
||
{
|
||
size_t start_x = 0, end_x = bitmap.width();
|
||
size_t start_y = 0, end_y = bitmap.height();
|
||
if (position.x() < 0) {
|
||
start_x = -position.x();
|
||
position.set_x(0);
|
||
}
|
||
if (position.y() < 0) {
|
||
start_y = -position.y();
|
||
position.set_y(0);
|
||
}
|
||
if (position.x() + bitmap.width() > out.width())
|
||
end_x = out.width() - position.x();
|
||
if (position.y() + bitmap.height() > out.height())
|
||
end_y = out.height() - position.y();
|
||
|
||
for (size_t y = start_y; y < end_y; ++y) {
|
||
for (size_t x = start_x; x < end_x; ++x) {
|
||
bool bit = bitmap.get_bit(x, y);
|
||
switch (operator_) {
|
||
case CombinationOperator::Or:
|
||
bit = bit || out.get_bit(position.x() + x, position.y() + y);
|
||
break;
|
||
case CombinationOperator::And:
|
||
bit = bit && out.get_bit(position.x() + x, position.y() + y);
|
||
break;
|
||
case CombinationOperator::Xor:
|
||
bit = bit ^ out.get_bit(position.x() + x, position.y() + y);
|
||
break;
|
||
case CombinationOperator::XNor:
|
||
bit = !(bit ^ out.get_bit(position.x() + x, position.y() + y));
|
||
break;
|
||
case CombinationOperator::Replace:
|
||
// Nothing to do.
|
||
break;
|
||
}
|
||
out.set_bit(position.x() + x, position.y() + y, bit);
|
||
}
|
||
}
|
||
}
|
||
|
||
struct Page {
|
||
IntSize size;
|
||
|
||
// This is never CombinationOperator::Replace for Pages.
|
||
CombinationOperator default_combination_operator { CombinationOperator::Or };
|
||
|
||
OwnPtr<BitBuffer> bits;
|
||
};
|
||
|
||
struct JBIG2LoadingContext {
|
||
enum class State {
|
||
NotDecoded = 0,
|
||
Error,
|
||
Decoded,
|
||
};
|
||
State state { State::NotDecoded };
|
||
|
||
Organization organization { Organization::Sequential };
|
||
Page page;
|
||
|
||
Optional<u32> number_of_pages;
|
||
|
||
Vector<SegmentData> segments;
|
||
HashMap<u32, u32> segments_by_number;
|
||
};
|
||
|
||
static ErrorOr<void> decode_jbig2_header(JBIG2LoadingContext& context, ReadonlyBytes data)
|
||
{
|
||
if (!JBIG2ImageDecoderPlugin::sniff(data))
|
||
return Error::from_string_literal("JBIG2LoadingContext: Invalid JBIG2 header");
|
||
|
||
FixedMemoryStream stream(data.slice(sizeof(id_string)));
|
||
|
||
// D.4.2 File header flags
|
||
u8 header_flags = TRY(stream.read_value<u8>());
|
||
if (header_flags & 0b11110000)
|
||
return Error::from_string_literal("JBIG2LoadingContext: Invalid header flags");
|
||
context.organization = (header_flags & 1) ? Organization::Sequential : Organization::RandomAccess;
|
||
dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Organization: {} ({})", (int)context.organization, context.organization == Organization::Sequential ? "Sequential" : "Random-access");
|
||
bool has_known_number_of_pages = (header_flags & 2) ? false : true;
|
||
bool uses_templates_with_12_AT_pixels = (header_flags & 4) ? true : false;
|
||
bool contains_colored_region_segments = (header_flags & 8) ? true : false;
|
||
|
||
// FIXME: Do something with these?
|
||
(void)uses_templates_with_12_AT_pixels;
|
||
(void)contains_colored_region_segments;
|
||
|
||
// D.4.3 Number of pages
|
||
if (has_known_number_of_pages) {
|
||
context.number_of_pages = TRY(stream.read_value<BigEndian<u32>>());
|
||
dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Number of pages: {}", context.number_of_pages.value());
|
||
}
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<SegmentHeader> decode_segment_header(SeekableStream& stream)
|
||
{
|
||
// 7.2.2 Segment number
|
||
u32 segment_number = TRY(stream.read_value<BigEndian<u32>>());
|
||
dbgln_if(JBIG2_DEBUG, "Segment number: {}", segment_number);
|
||
|
||
// 7.2.3 Segment header flags
|
||
u8 flags = TRY(stream.read_value<u8>());
|
||
SegmentType type = static_cast<SegmentType>(flags & 0b11'1111);
|
||
dbgln_if(JBIG2_DEBUG, "Segment type: {}", (int)type);
|
||
bool segment_page_association_size_is_32_bits = (flags & 0b100'0000) != 0;
|
||
bool segment_retained_only_by_itself_and_extension_segments = (flags & 0b1000'00000) != 0;
|
||
|
||
// FIXME: Do something with these.
|
||
(void)segment_page_association_size_is_32_bits;
|
||
(void)segment_retained_only_by_itself_and_extension_segments;
|
||
|
||
// 7.2.4 Referred-to segment count and retention flags
|
||
u8 referred_to_segment_count_and_retention_flags = TRY(stream.read_value<u8>());
|
||
u32 count_of_referred_to_segments = referred_to_segment_count_and_retention_flags >> 5;
|
||
if (count_of_referred_to_segments == 5 || count_of_referred_to_segments == 6)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid count_of_referred_to_segments");
|
||
u32 extra_count = 0;
|
||
if (count_of_referred_to_segments == 7) {
|
||
TRY(stream.seek(-1, SeekMode::FromCurrentPosition));
|
||
count_of_referred_to_segments = TRY(stream.read_value<BigEndian<u32>>()) & 0x1FFF'FFFF;
|
||
extra_count = ceil_div(count_of_referred_to_segments + 1, 8);
|
||
TRY(stream.seek(extra_count, SeekMode::FromCurrentPosition));
|
||
}
|
||
dbgln_if(JBIG2_DEBUG, "Referred-to segment count: {}", count_of_referred_to_segments);
|
||
|
||
// 7.2.5 Referred-to segment numbers
|
||
Vector<u32> referred_to_segment_numbers;
|
||
for (u32 i = 0; i < count_of_referred_to_segments; ++i) {
|
||
u32 referred_to_segment_number;
|
||
if (segment_number <= 256)
|
||
referred_to_segment_number = TRY(stream.read_value<u8>());
|
||
else if (segment_number <= 65536)
|
||
referred_to_segment_number = TRY(stream.read_value<BigEndian<u16>>());
|
||
else
|
||
referred_to_segment_number = TRY(stream.read_value<BigEndian<u32>>());
|
||
referred_to_segment_numbers.append(referred_to_segment_number);
|
||
dbgln_if(JBIG2_DEBUG, "Referred-to segment number: {}", referred_to_segment_number);
|
||
}
|
||
|
||
// 7.2.6 Segment page association
|
||
u32 segment_page_association;
|
||
if (segment_page_association_size_is_32_bits) {
|
||
segment_page_association = TRY(stream.read_value<BigEndian<u32>>());
|
||
} else {
|
||
segment_page_association = TRY(stream.read_value<u8>());
|
||
}
|
||
dbgln_if(JBIG2_DEBUG, "Segment page association: {}", segment_page_association);
|
||
|
||
// 7.2.7 Segment data length
|
||
u32 data_length = TRY(stream.read_value<BigEndian<u32>>());
|
||
dbgln_if(JBIG2_DEBUG, "Segment data length: {}", data_length);
|
||
|
||
// FIXME: Add some validity checks:
|
||
// - check type is valid
|
||
// - check referred_to_segment_numbers are smaller than segment_number
|
||
// - 7.3.1 Rules for segment references
|
||
// - 7.3.2 Rules for page associations
|
||
|
||
Optional<u32> opt_data_length;
|
||
if (data_length != 0xffff'ffff)
|
||
opt_data_length = data_length;
|
||
else if (type != ImmediateGenericRegion)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown data length only allowed for ImmediateGenericRegion");
|
||
|
||
return SegmentHeader { segment_number, type, move(referred_to_segment_numbers), segment_page_association, opt_data_length };
|
||
}
|
||
|
||
static ErrorOr<size_t> scan_for_immediate_generic_region_size(ReadonlyBytes data)
|
||
{
|
||
// 7.2.7 Segment data length
|
||
// "If the segment's type is "Immediate generic region", then the length field may contain the value 0xFFFFFFFF.
|
||
// This value is intended to mean that the length of the segment's data part is unknown at the time that the segment header is written (...).
|
||
// In this case, the true length of the segment's data part shall be determined through examination of the data:
|
||
// if the segment uses template-based arithmetic coding, then the segment's data part ends with the two-byte sequence 0xFF 0xAC followed by a four-byte row count.
|
||
// If the segment uses MMR coding, then the segment's data part ends with the two-byte sequence 0x00 0x00 followed by a four-byte row count.
|
||
// The form of encoding used by the segment may be determined by examining the eighteenth byte of its segment data part,
|
||
// and the end sequences can occur anywhere after that eighteenth byte."
|
||
// 7.4.6.4 Decoding a generic region segment
|
||
// "NOTE – The sequence 0x00 0x00 cannot occur within MMR-encoded data; the sequence 0xFF 0xAC can occur only at the end of arithmetically-coded data.
|
||
// Thus, those sequences cannot occur by chance in the data that is decoded to generate the contents of the generic region."
|
||
dbgln_if(JBIG2_DEBUG, "(Unknown data length, computing it)");
|
||
|
||
if (data.size() < 19 + sizeof(u32))
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Data too short to contain segment data header and end sequence");
|
||
|
||
// Per 7.4.6.1 Generic region segment data header, this starts with the 17 bytes described in
|
||
// 7.4.1 Region segment information field, followed the byte described in 7.4.6.2 Generic region segment flags.
|
||
// That byte's lowest bit stores if the segment uses MMR.
|
||
u8 flags = data[17];
|
||
bool uses_mmr = (flags & 1) != 0;
|
||
auto end_sequence = uses_mmr ? to_array<u8>({ 0x00, 0x00 }) : to_array<u8>({ 0xFF, 0xAC });
|
||
u8 const* end = static_cast<u8 const*>(memmem(data.data() + 19, data.size() - 19 - sizeof(u32), end_sequence.data(), end_sequence.size()));
|
||
if (!end)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Could not find end sequence in segment data");
|
||
|
||
size_t size = end - data.data() + end_sequence.size() + sizeof(u32);
|
||
dbgln_if(JBIG2_DEBUG, "(Computed size is {})", size);
|
||
return size;
|
||
}
|
||
|
||
static ErrorOr<void> decode_segment_headers(JBIG2LoadingContext& context, ReadonlyBytes data)
|
||
{
|
||
FixedMemoryStream stream(data);
|
||
|
||
Vector<ReadonlyBytes> segment_datas;
|
||
auto store_and_skip_segment_data = [&](SegmentHeader const& segment_header) -> ErrorOr<void> {
|
||
size_t start_offset = TRY(stream.tell());
|
||
u32 data_length = TRY(segment_header.data_length.try_value_or_lazy_evaluated([&]() {
|
||
return scan_for_immediate_generic_region_size(data.slice(start_offset));
|
||
}));
|
||
|
||
if (start_offset + data_length > data.size()) {
|
||
dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: start_offset={}, data_length={}, data.size()={}", start_offset, data_length, data.size());
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment data length exceeds file size");
|
||
}
|
||
ReadonlyBytes segment_data = data.slice(start_offset, data_length);
|
||
segment_datas.append(segment_data);
|
||
|
||
TRY(stream.seek(data_length, SeekMode::FromCurrentPosition));
|
||
return {};
|
||
};
|
||
|
||
Vector<SegmentHeader> segment_headers;
|
||
while (!stream.is_eof()) {
|
||
auto segment_header = TRY(decode_segment_header(stream));
|
||
segment_headers.append(segment_header);
|
||
|
||
if (context.organization != Organization::RandomAccess)
|
||
TRY(store_and_skip_segment_data(segment_header));
|
||
|
||
// Required per spec for files with RandomAccess organization.
|
||
if (segment_header.type == SegmentType::EndOfFile)
|
||
break;
|
||
}
|
||
|
||
if (context.organization == Organization::RandomAccess) {
|
||
for (auto const& segment_header : segment_headers)
|
||
TRY(store_and_skip_segment_data(segment_header));
|
||
}
|
||
|
||
if (segment_headers.size() != segment_datas.size())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment headers and segment datas have different sizes");
|
||
for (size_t i = 0; i < segment_headers.size(); ++i) {
|
||
context.segments.append({ segment_headers[i], segment_datas[i], {} });
|
||
context.segments_by_number.set(segment_headers[i].segment_number, context.segments.size() - 1);
|
||
}
|
||
|
||
return {};
|
||
}
|
||
|
||
// 7.4.1 Region segment information field
|
||
struct [[gnu::packed]] RegionSegmentInformationField {
|
||
BigEndian<u32> width;
|
||
BigEndian<u32> height;
|
||
BigEndian<u32> x_location;
|
||
BigEndian<u32> y_location;
|
||
u8 flags;
|
||
|
||
CombinationOperator external_combination_operator() const
|
||
{
|
||
VERIFY((flags & 0x7) <= 4);
|
||
return static_cast<CombinationOperator>(flags & 0x7);
|
||
}
|
||
|
||
bool is_color_bitmap() const
|
||
{
|
||
return (flags & 0x8) != 0;
|
||
}
|
||
};
|
||
static_assert(AssertSize<RegionSegmentInformationField, 17>());
|
||
|
||
static ErrorOr<RegionSegmentInformationField> decode_region_segment_information_field(ReadonlyBytes data)
|
||
{
|
||
// 7.4.8 Page information segment syntax
|
||
if (data.size() < sizeof(RegionSegmentInformationField))
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field size");
|
||
auto result = *(RegionSegmentInformationField const*)data.data();
|
||
if ((result.flags & 0b1111'0000) != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field flags");
|
||
if ((result.flags & 0x7) > 4)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field operator");
|
||
|
||
// NOTE 3 – If the colour extension flag (COLEXTFLAG) is equal to 1, the external combination operator must be REPLACE.
|
||
if (result.is_color_bitmap() && result.external_combination_operator() != CombinationOperator::Replace)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid colored region segment information field operator");
|
||
|
||
return result;
|
||
}
|
||
|
||
// 7.4.8 Page information segment syntax
|
||
struct [[gnu::packed]] PageInformationSegment {
|
||
BigEndian<u32> bitmap_width;
|
||
BigEndian<u32> bitmap_height;
|
||
BigEndian<u32> page_x_resolution; // In pixels/meter.
|
||
BigEndian<u32> page_y_resolution; // In pixels/meter.
|
||
u8 flags;
|
||
BigEndian<u16> striping_information;
|
||
};
|
||
static_assert(AssertSize<PageInformationSegment, 19>());
|
||
|
||
static ErrorOr<PageInformationSegment> decode_page_information_segment(ReadonlyBytes data)
|
||
{
|
||
// 7.4.8 Page information segment syntax
|
||
if (data.size() != sizeof(PageInformationSegment))
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid page information segment size");
|
||
return *(PageInformationSegment const*)data.data();
|
||
}
|
||
|
||
static ErrorOr<void> scan_for_page_size(JBIG2LoadingContext& context)
|
||
{
|
||
// We only decode the first page at the moment.
|
||
bool found_size = false;
|
||
for (auto const& segment : context.segments) {
|
||
if (segment.header.type != SegmentType::PageInformation || segment.header.page_association != 1)
|
||
continue;
|
||
auto page_information = TRY(decode_page_information_segment(segment.data));
|
||
|
||
// FIXME: We're supposed to compute this from the striping information if it's not set.
|
||
if (page_information.bitmap_height == 0xffff'ffff)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle unknown page height yet");
|
||
|
||
context.page.size = { page_information.bitmap_width, page_information.bitmap_height };
|
||
found_size = true;
|
||
}
|
||
if (!found_size)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No page information segment found for page 1");
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> warn_about_multiple_pages(JBIG2LoadingContext& context)
|
||
{
|
||
HashTable<u32> seen_pages;
|
||
Vector<u32> pages;
|
||
|
||
for (auto const& segment : context.segments) {
|
||
if (segment.header.page_association == 0)
|
||
continue;
|
||
if (seen_pages.contains(segment.header.page_association))
|
||
continue;
|
||
seen_pages.set(segment.header.page_association);
|
||
pages.append(segment.header.page_association);
|
||
}
|
||
|
||
// scan_for_page_size() already checked that there's a page 1.
|
||
VERIFY(seen_pages.contains(1));
|
||
if (pages.size() == 1)
|
||
return {};
|
||
|
||
StringBuilder builder;
|
||
builder.appendff("JBIG2 file contains {} pages ({}", pages.size(), pages[0]);
|
||
size_t i;
|
||
for (i = 1; i < min(pages.size(), 10); ++i)
|
||
builder.appendff(" {}", pages[i]);
|
||
if (i != pages.size())
|
||
builder.append(" ..."sv);
|
||
builder.append("). We will only render page 1."sv);
|
||
dbgln("JBIG2ImageDecoderPlugin: {}", TRY(builder.to_string()));
|
||
|
||
return {};
|
||
}
|
||
|
||
struct AdaptiveTemplatePixel {
|
||
i8 x { 0 };
|
||
i8 y { 0 };
|
||
};
|
||
|
||
// 6.2.2 Input parameters
|
||
// Table 2 – Parameters for the generic region decoding procedure
|
||
struct GenericRegionDecodingInputParameters {
|
||
bool is_modified_modified_read { false }; // "MMR" in spec.
|
||
u32 region_width { 0 }; // "GBW" in spec.
|
||
u32 region_height { 0 }; // "GBH" in spec.
|
||
u8 gb_template { 0 };
|
||
bool is_typical_prediction_used { false }; // "TPGDON" in spec.
|
||
bool is_extended_reference_template_used { false }; // "EXTTEMPLATE" in spec.
|
||
Optional<NonnullOwnPtr<BitBuffer>> skip_pattern; // "USESKIP", "SKIP" in spec.
|
||
|
||
Array<AdaptiveTemplatePixel, 12> adaptive_template_pixels; // "GBATX" / "GBATY" in spec.
|
||
// FIXME: GBCOLS, GBCOMBOP, COLEXTFLAG
|
||
|
||
// If is_modified_modified_read is false, generic_region_decoding_procedure() reads data off this decoder.
|
||
JBIG2::ArithmeticDecoder* arithmetic_decoder { nullptr };
|
||
};
|
||
|
||
// 6.2 Generic region decoding procedure
|
||
static ErrorOr<NonnullOwnPtr<BitBuffer>> generic_region_decoding_procedure(GenericRegionDecodingInputParameters const& inputs, ReadonlyBytes data, Vector<JBIG2::ArithmeticDecoder::Context>& contexts)
|
||
{
|
||
if (inputs.is_modified_modified_read) {
|
||
dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: MMR image data");
|
||
|
||
// 6.2.6 Decoding using MMR coding
|
||
auto buffer = TRY(CCITT::decode_ccitt_group4(data, inputs.region_width, inputs.region_height));
|
||
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
|
||
size_t bytes_per_row = ceil_div(inputs.region_width, 8);
|
||
if (buffer.size() != bytes_per_row * inputs.region_height)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoded MMR data has wrong size");
|
||
|
||
// FIXME: Could probably just copy the ByteBuffer directly into the BitBuffer's internal ByteBuffer instead.
|
||
for (size_t y = 0; y < inputs.region_height; ++y) {
|
||
for (size_t x = 0; x < inputs.region_width; ++x) {
|
||
bool bit = buffer[y * bytes_per_row + x / 8] & (1 << (7 - x % 8));
|
||
result->set_bit(x, y, bit);
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// 6.2.5 Decoding using a template and arithmetic coding
|
||
if (inputs.is_extended_reference_template_used)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode EXTTEMPLATE yet");
|
||
|
||
if (inputs.gb_template == 0) {
|
||
if (inputs.adaptive_template_pixels[0].x != 3 || inputs.adaptive_template_pixels[0].y != -1
|
||
|| inputs.adaptive_template_pixels[1].x != -3 || inputs.adaptive_template_pixels[1].y != -1
|
||
|| inputs.adaptive_template_pixels[2].x != 2 || inputs.adaptive_template_pixels[2].y != -2
|
||
|| inputs.adaptive_template_pixels[3].x != -2 || inputs.adaptive_template_pixels[3].y != -2)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet");
|
||
} else if (inputs.gb_template == 1) {
|
||
if (inputs.adaptive_template_pixels[0].x != 3 || inputs.adaptive_template_pixels[0].y != -1)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet");
|
||
} else {
|
||
VERIFY(inputs.gb_template == 2 || inputs.gb_template == 3);
|
||
if (inputs.adaptive_template_pixels[0].x != 2 || inputs.adaptive_template_pixels[0].y != -1)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet");
|
||
}
|
||
|
||
if (inputs.skip_pattern.has_value())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode USESKIP yet");
|
||
|
||
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
|
||
|
||
static constexpr auto get_pixel = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> bool {
|
||
if (x < 0 || x >= (int)buffer->width() || y < 0)
|
||
return false;
|
||
return buffer->get_bit(x, y);
|
||
};
|
||
|
||
// Figure 3(a) – Template when GBTEMPLATE = 0 and EXTTEMPLATE = 0,
|
||
constexpr auto compute_context_0 = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
for (int i = 0; i < 5; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 2);
|
||
for (int i = 0; i < 7; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y - 1);
|
||
for (int i = 0; i < 4; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y);
|
||
return result;
|
||
};
|
||
|
||
// Figure 4 – Template when GBTEMPLATE = 1
|
||
auto compute_context_1 = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
for (int i = 0; i < 4; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2);
|
||
for (int i = 0; i < 6; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1);
|
||
for (int i = 0; i < 3; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y);
|
||
return result;
|
||
};
|
||
|
||
// Figure 5 – Template when GBTEMPLATE = 2
|
||
auto compute_context_2 = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
for (int i = 0; i < 3; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2);
|
||
for (int i = 0; i < 5; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1);
|
||
for (int i = 0; i < 2; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y);
|
||
return result;
|
||
};
|
||
|
||
// Figure 6 – Template when GBTEMPLATE = 3
|
||
auto compute_context_3 = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
for (int i = 0; i < 6; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y - 1);
|
||
for (int i = 0; i < 4; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y);
|
||
return result;
|
||
};
|
||
|
||
u16 (*compute_context)(NonnullOwnPtr<BitBuffer> const&, int, int);
|
||
if (inputs.gb_template == 0)
|
||
compute_context = compute_context_0;
|
||
else if (inputs.gb_template == 1)
|
||
compute_context = compute_context_1;
|
||
else if (inputs.gb_template == 2)
|
||
compute_context = compute_context_2;
|
||
else {
|
||
VERIFY(inputs.gb_template == 3);
|
||
compute_context = compute_context_3;
|
||
}
|
||
|
||
// "The values of the pixels in this neighbourhood define a context. Each context has its own adaptive probability estimate
|
||
// used by the arithmetic coder (see Annex E)."
|
||
// "* Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set to the value formed by
|
||
// concatenating the label "GB" and the 10-16 pixel values gathered in CONTEXT."
|
||
// Implementor's note: What this is supposed to mean is that we have a bunch of independent contexts, and we pick the
|
||
// context for the current pixel based on pixel values in the neighborhood. The "GB" part just means this context is
|
||
// independent from other contexts in the spec. They are passed in to this function.
|
||
|
||
// Figure 8 – Reused context for coding the SLTP value when GBTEMPLATE is 0
|
||
constexpr u16 sltp_context_for_template_0 = 0b10011'0110010'0101;
|
||
|
||
// Figure 9 – Reused context for coding the SLTP value when GBTEMPLATE is 1
|
||
constexpr u16 sltp_context_for_template_1 = 0b0011'110010'101;
|
||
|
||
// Figure 10 – Reused context for coding the SLTP value when GBTEMPLATE is 2
|
||
constexpr u16 sltp_context_for_template_2 = 0b001'11001'01;
|
||
|
||
// Figure 11 – Reused context for coding the SLTP value when GBTEMPLATE is 3
|
||
constexpr u16 sltp_context_for_template_3 = 0b011001'0101;
|
||
|
||
u16 sltp_context = [](u8 gb_template) {
|
||
if (gb_template == 0)
|
||
return sltp_context_for_template_0;
|
||
if (gb_template == 1)
|
||
return sltp_context_for_template_1;
|
||
if (gb_template == 2)
|
||
return sltp_context_for_template_2;
|
||
VERIFY(gb_template == 3);
|
||
return sltp_context_for_template_3;
|
||
}(inputs.gb_template);
|
||
|
||
// 6.2.5.7 Decoding the bitmap
|
||
JBIG2::ArithmeticDecoder& decoder = *inputs.arithmetic_decoder;
|
||
bool ltp = false; // "LTP" in spec. "Line (uses) Typical Prediction" maybe?
|
||
for (size_t y = 0; y < inputs.region_height; ++y) {
|
||
if (inputs.is_typical_prediction_used) {
|
||
// "SLTP" in spec. "Swap LTP" or "Switch LTP" maybe?
|
||
bool sltp = decoder.get_next_bit(contexts[sltp_context]);
|
||
ltp = ltp ^ sltp;
|
||
if (ltp) {
|
||
for (size_t x = 0; x < inputs.region_width; ++x)
|
||
result->set_bit(x, y, get_pixel(result, (int)x, (int)y - 1));
|
||
continue;
|
||
}
|
||
}
|
||
|
||
for (size_t x = 0; x < inputs.region_width; ++x) {
|
||
u16 context = compute_context(result, x, y);
|
||
bool bit = decoder.get_next_bit(contexts[context]);
|
||
result->set_bit(x, y, bit);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
// 6.3.2 Input parameters
|
||
// Table 6 – Parameters for the generic refinement region decoding procedure
|
||
struct GenericRefinementRegionDecodingInputParameters {
|
||
u32 region_width { 0 }; // "GRW" in spec.
|
||
u32 region_height { 0 }; // "GRH" in spec.
|
||
u8 gr_template { 0 }; // "GRTEMPLATE" in spec.
|
||
BitBuffer const* reference_bitmap { nullptr }; // "GRREFERENCE" in spec.
|
||
i32 reference_x_offset { 0 }; // "GRREFERENCEDX" in spec.
|
||
i32 reference_y_offset { 0 }; // "GRREFERENCEDY" in spec.
|
||
bool is_typical_prediction_used { false }; // "TPGDON" in spec.
|
||
Array<AdaptiveTemplatePixel, 2> adaptive_template_pixels; // "GRATX" / "GRATY" in spec.
|
||
};
|
||
|
||
// 6.3 Generic Refinement Region Decoding Procedure
|
||
static ErrorOr<NonnullOwnPtr<BitBuffer>> generic_refinement_region_decoding_procedure(GenericRefinementRegionDecodingInputParameters& inputs, JBIG2::ArithmeticDecoder& decoder, Vector<JBIG2::ArithmeticDecoder::Context>& contexts)
|
||
{
|
||
VERIFY(inputs.gr_template == 0 || inputs.gr_template == 1);
|
||
|
||
if (inputs.is_typical_prediction_used)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode typical prediction in generic refinement regions yet");
|
||
|
||
if (inputs.gr_template == 0) {
|
||
if (inputs.adaptive_template_pixels[0].x != -1 || inputs.adaptive_template_pixels[0].y != -1
|
||
|| inputs.adaptive_template_pixels[1].x != -1 || inputs.adaptive_template_pixels[1].y != -1)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels in refinement regions yet");
|
||
}
|
||
// GRTEMPLATE 1 never uses adaptive pixels.
|
||
|
||
// 6.3.5.3 Fixed templates and adaptive templates
|
||
static constexpr auto get_pixel = [](BitBuffer const& buffer, int x, int y) -> bool {
|
||
if (x < 0 || x >= (int)buffer.width() || y < 0 || y >= (int)buffer.height())
|
||
return false;
|
||
return buffer.get_bit(x, y);
|
||
};
|
||
|
||
// Figure 12 – 13-pixel refinement template showing the AT pixels at their nominal locations
|
||
constexpr auto compute_context_0 = [](BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
|
||
for (int dy = -1; dy <= 1; ++dy)
|
||
for (int dx = -1; dx <= 1; ++dx)
|
||
result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy);
|
||
|
||
for (int i = 0; i < 3; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 1);
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1, y);
|
||
|
||
return result;
|
||
};
|
||
|
||
// Figure 13 – 10-pixel refinement template
|
||
constexpr auto compute_context_1 = [](BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 {
|
||
u16 result = 0;
|
||
|
||
for (int dy = -1; dy <= 1; ++dy) {
|
||
for (int dx = -1; dx <= 1; ++dx) {
|
||
if ((dy == -1 && (dx == -1 || dx == 1)) || (dy == 1 && dx == -1))
|
||
continue;
|
||
result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < 3; ++i)
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 1);
|
||
result = (result << 1) | (u16)get_pixel(buffer, x - 1, y);
|
||
|
||
return result;
|
||
};
|
||
|
||
auto compute_context = inputs.gr_template == 0 ? compute_context_0 : compute_context_1;
|
||
|
||
// 6.3.5.6 Decoding the refinement bitmap
|
||
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
|
||
for (size_t y = 0; y < result->height(); ++y) {
|
||
for (size_t x = 0; x < result->width(); ++x) {
|
||
u16 context = compute_context(*inputs.reference_bitmap, x - inputs.reference_x_offset, y - inputs.reference_y_offset, *result, x, y);
|
||
bool bit = decoder.get_next_bit(contexts[context]);
|
||
result->set_bit(x, y, bit);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
// 6.4.2 Input parameters
|
||
// Table 9 – Parameters for the text region decoding procedure
|
||
struct TextRegionDecodingInputParameters {
|
||
bool uses_huffman_encoding { false }; // "SBHUFF" in spec.
|
||
bool uses_refinement_coding { false }; // "SBREFINE" in spec.
|
||
u32 region_width { 0 }; // "SBW" in spec.
|
||
u32 region_height { 0 }; // "SBH" in spec.
|
||
u32 number_of_instances { 0 }; // "SBNUMINSTANCES" in spec.
|
||
u32 size_of_symbol_instance_strips { 0 }; // "SBSTRIPS" in spec.
|
||
// "SBNUMSYMS" is `symbols.size()` below.
|
||
|
||
// FIXME: SBSYMCODES
|
||
u32 id_symbol_code_length { 0 }; // "SBSYMCODELEN" in spec.
|
||
Vector<NonnullRefPtr<Symbol>> symbols; // "SBNUMSYMS" / "SBSYMS" in spec.
|
||
u8 default_pixel { 0 }; // "SBDEFPIXEL" in spec.
|
||
|
||
CombinationOperator operator_ { CombinationOperator::Or }; // "SBCOMBOP" in spec.
|
||
|
||
bool is_transposed { false }; // "TRANSPOSED" in spec.
|
||
|
||
enum class Corner {
|
||
BottomLeft = 0,
|
||
TopLeft = 1,
|
||
BottomRight = 2,
|
||
TopRight = 3,
|
||
};
|
||
Corner reference_corner { Corner::TopLeft }; // "REFCORNER" in spec.
|
||
|
||
i8 delta_s_offset { 0 }; // "SBDSOFFSET" in spec.
|
||
// FIXME: SBHUFFFS, SBHUFFFDS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SBHUFFRDX, SBHUFFRDY, SBHUFFRSIZE
|
||
|
||
u8 refinement_template { 0 }; // "SBRTEMPLATE" in spec.
|
||
Array<AdaptiveTemplatePixel, 2> refinement_adaptive_template_pixels; // "SBRATX" / "SBRATY" in spec.
|
||
// FIXME: COLEXTFLAG, SBCOLS
|
||
};
|
||
|
||
// 6.4 Text Region Decoding Procedure
|
||
static ErrorOr<NonnullOwnPtr<BitBuffer>> text_region_decoding_procedure(TextRegionDecodingInputParameters const& inputs, ReadonlyBytes data)
|
||
{
|
||
if (inputs.uses_huffman_encoding)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet");
|
||
|
||
if (inputs.is_transposed)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode transposed text regions yet");
|
||
|
||
auto decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data));
|
||
|
||
// 6.4.6 Strip delta T
|
||
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDT and multiply the resulting value by SBSTRIPS.
|
||
// If SBHUFF is 0, decode a value using the IADT integer arithmetic decoding procedure (see Annex A) and multiply the resulting value by SBSTRIPS."
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder delta_t_integer_decoder(decoder);
|
||
auto read_delta_t = [&]() -> i32 {
|
||
return delta_t_integer_decoder.decode().value() * inputs.size_of_symbol_instance_strips;
|
||
};
|
||
|
||
// 6.4.7 First symbol instance S coordinate
|
||
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFFS.
|
||
// If SBHUFF is 0, decode a value using the IAFS integer arithmetic decoding procedure (see Annex A)."
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder first_s_integer_decoder(decoder);
|
||
auto read_first_s = [&]() -> i32 {
|
||
return first_s_integer_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.8 Subsequent symbol instance S coordinate
|
||
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDS.
|
||
// If SBHUFF is 0, decode a value using the IADS integer arithmetic decoding procedure (see Annex A).
|
||
// In either case it is possible that the result of this decoding is the out-of-band value OOB.""
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder subsequent_s_integer_decoder(decoder);
|
||
auto read_subsequent_s = [&]() -> Optional<i32> {
|
||
return subsequent_s_integer_decoder.decode();
|
||
};
|
||
|
||
// 6.4.9 Symbol instance T coordinate
|
||
// "If SBSTRIPS == 1, then the value decoded is always zero. Otherwise:
|
||
// • If SBHUFF is 1, decode a value by reading ceil(log2(SBSTRIPS)) bits directly from the bitstream.
|
||
// • If SBHUFF is 0, decode a value using the IAIT integer arithmetic decoding procedure (see Annex A)."
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder instance_t_integer_decoder(decoder);
|
||
auto read_instance_t = [&]() -> i32 {
|
||
if (inputs.size_of_symbol_instance_strips == 1)
|
||
return 0;
|
||
return instance_t_integer_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.10 Symbol instance symbol ID
|
||
// "If SBHUFF is 1, decode a value by reading one bit at a time until the resulting bit string is equal to one of the entries in
|
||
// SBSYMCODES. The resulting value, which is IDI, is the index of the entry in SBSYMCODES that is read.
|
||
// If SBHUFF is 0, decode a value using the IAID integer arithmetic decoding procedure (see Annex A). Set IDI to the
|
||
// resulting value.""
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerIDDecoder id_decoder(decoder, inputs.id_symbol_code_length);
|
||
|
||
// 6.4.11.1 Symbol instance refinement delta width
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder refinement_delta_width_decoder(decoder);
|
||
auto read_refinement_delta_width = [&]() -> i32 {
|
||
return refinement_delta_width_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.11.2 Symbol instance refinement delta width
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder refinement_delta_height_decoder(decoder);
|
||
auto read_refinement_delta_height = [&]() -> i32 {
|
||
return refinement_delta_height_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.11.3 Symbol instance refinement X offset
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder refinement_x_offset_decoder(decoder);
|
||
auto read_refinement_x_offset = [&]() -> i32 {
|
||
return refinement_x_offset_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.11.4 Symbol instance refinement Y offset
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder refinement_y_offset_decoder(decoder);
|
||
auto read_refinement_y_offset = [&]() -> i32 {
|
||
return refinement_y_offset_decoder.decode().value();
|
||
};
|
||
|
||
// 6.4.11 Symbol instance bitmap
|
||
JBIG2::ArithmeticIntegerDecoder has_refinement_image_decoder(decoder);
|
||
Vector<JBIG2::ArithmeticDecoder::Context> refinement_contexts;
|
||
if (inputs.uses_refinement_coding)
|
||
refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10));
|
||
OwnPtr<BitBuffer> refinement_result;
|
||
auto read_bitmap = [&](u32 id) -> ErrorOr<BitBuffer const*> {
|
||
if (id >= inputs.symbols.size())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol ID out of range");
|
||
auto const& symbol = inputs.symbols[id]->bitmap();
|
||
|
||
bool has_refinement_image = false; // "R_I" in spec.
|
||
if (inputs.uses_refinement_coding) {
|
||
// "• If SBHUFF is 1, then read one bit and set RI to the value of that bit.
|
||
// • If SBHUFF is 0, then decode one bit using the IARI integer arithmetic decoding procedure and set RI to the value of that bit."
|
||
// FIXME: Implement support for SBHUFF = 1.
|
||
has_refinement_image = has_refinement_image_decoder.decode().value();
|
||
}
|
||
|
||
if (!has_refinement_image)
|
||
return &symbol;
|
||
|
||
auto refinement_delta_width = read_refinement_delta_width();
|
||
auto refinement_delta_height = read_refinement_delta_height();
|
||
auto refinement_x_offset = read_refinement_x_offset();
|
||
auto refinement_y_offset = read_refinement_y_offset();
|
||
// FIXME: This is missing some steps needed for the SBHUFF = 1 case.
|
||
|
||
dbgln_if(JBIG2_DEBUG, "refinement delta width: {}, refinement delta height: {}, refinement x offset: {}, refinement y offset: {}", refinement_delta_width, refinement_delta_height, refinement_x_offset, refinement_y_offset);
|
||
|
||
// Table 12 – Parameters used to decode a symbol instance's bitmap using refinement
|
||
GenericRefinementRegionDecodingInputParameters refinement_inputs;
|
||
refinement_inputs.region_width = symbol.width() + refinement_delta_width;
|
||
refinement_inputs.region_height = symbol.height() + refinement_delta_height;
|
||
refinement_inputs.gr_template = inputs.refinement_template;
|
||
refinement_inputs.reference_bitmap = &symbol;
|
||
refinement_inputs.reference_x_offset = refinement_delta_width / 2 + refinement_x_offset;
|
||
refinement_inputs.reference_y_offset = refinement_delta_height / 2 + refinement_y_offset;
|
||
refinement_inputs.is_typical_prediction_used = false;
|
||
refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels;
|
||
refinement_result = TRY(generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts));
|
||
return refinement_result.ptr();
|
||
};
|
||
|
||
// 6.4.5 Decoding the text region
|
||
|
||
// "1) Fill a bitmap SBREG, of the size given by SBW and SBH, with the SBDEFPIXEL value."
|
||
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
|
||
if (inputs.default_pixel != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle SBDEFPIXEL not equal to 0 yet");
|
||
result->fill(inputs.default_pixel != 0);
|
||
|
||
// "2) Decode the initial STRIPT value as described in 6.4.6. Negate the decoded value and assign this negated value to the variable STRIPT.
|
||
// Assign the value 0 to FIRSTS. Assign the value 0 to NINSTANCES."
|
||
i32 strip_t = -read_delta_t();
|
||
i32 first_s = 0;
|
||
u32 n_instances = 0;
|
||
|
||
// "3) If COLEXTFLAG is 1, decode the colour section as described in 6.4.12."
|
||
// FIXME: Implement support for colors one day.
|
||
|
||
// "4) Decode each strip as follows:
|
||
// a) If NINSTANCES is equal to SBNUMINSTANCES then there are no more strips to decode,
|
||
// and the process of decoding the text region is complete; proceed to step 4)."
|
||
// Implementor's note. The spec means "proceed to step 5)" at the end of 4a).
|
||
while (n_instances < inputs.number_of_instances) {
|
||
// "b) Decode the strip's delta T value as described in 6.4.6. Let DT be the decoded value. Set:
|
||
// STRIPT = STRIPT + DT"
|
||
i32 delta_t = read_delta_t();
|
||
strip_t += delta_t;
|
||
|
||
i32 cur_s;
|
||
bool is_first_symbol = true;
|
||
while (true) {
|
||
// "c) Decode each symbol instance in the strip as follows:
|
||
// i) If the current symbol instance is the first symbol instance in the strip, then decode the first
|
||
// symbol instance's S coordinate as described in 6.4.7. Let DFS be the decoded value. Set:
|
||
// FIRSTS = FIRSTS + DFS
|
||
// CURS = FIRSTS
|
||
// ii) Otherwise, if the current symbol instance is not the first symbol instance in the strip, decode
|
||
// the symbol instance's S coordinate as described in 6.4.8. If the result of this decoding is OOB
|
||
// then the last symbol instance of the strip has been decoded; proceed to step 3 d). Otherwise, let
|
||
// IDS be the decoded value. Set:
|
||
// CURS = CURS + IDS + SBDSOFFSET"
|
||
// Implementor's note: The spec means "proceed to step 4 d)" in 4c ii).
|
||
if (is_first_symbol) {
|
||
i32 delta_first_s = read_first_s();
|
||
first_s += delta_first_s;
|
||
cur_s = first_s;
|
||
is_first_symbol = false;
|
||
} else {
|
||
auto subsequent_s = read_subsequent_s();
|
||
if (!subsequent_s.has_value())
|
||
break;
|
||
i32 instance_delta_s = subsequent_s.value();
|
||
cur_s += instance_delta_s + inputs.delta_s_offset;
|
||
}
|
||
|
||
// "iii) Decode the symbol instance's T coordinate as described in 6.4.9. Let CURT be the decoded value. Set:
|
||
// TI = STRIPT + CURT"
|
||
i32 cur_t = read_instance_t();
|
||
i32 t_instance = strip_t + cur_t;
|
||
|
||
// "iv) Decode the symbol instance's symbol ID as described in 6.4.10. Let IDI be the decoded value."
|
||
u32 id = id_decoder.decode();
|
||
|
||
// "v) Determine the symbol instance's bitmap IBI as described in 6.4.11. The width and height of this
|
||
// bitmap shall be denoted as WI and HI respectively."
|
||
auto const& symbol = *TRY(read_bitmap(id));
|
||
|
||
// "vi) Update CURS as follows:
|
||
// • If TRANSPOSED is 0, and REFCORNER is TOPRIGHT or BOTTOMRIGHT, set:
|
||
// CURS = CURS + WI – 1
|
||
// • If TRANSPOSED is 1, and REFCORNER is BOTTOMLEFT or BOTTOMRIGHT, set:
|
||
// CURS = CURS + HI –1
|
||
// • Otherwise, do not change CURS in this step."
|
||
using enum TextRegionDecodingInputParameters::Corner;
|
||
if (!inputs.is_transposed && (inputs.reference_corner == TopRight || inputs.reference_corner == BottomRight))
|
||
cur_s += symbol.width() - 1;
|
||
if (inputs.is_transposed && (inputs.reference_corner == BottomLeft || inputs.reference_corner == BottomRight))
|
||
cur_s += symbol.height() - 1;
|
||
|
||
// "vii) Set:
|
||
// SI = CURS"
|
||
auto s_instance = cur_s;
|
||
|
||
// "viii) Determine the location of the symbol instance bitmap with respect to SBREG as follows:
|
||
// • If TRANSPOSED is 0, then:
|
||
// – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap
|
||
// IBI shall be placed at SBREG[SI, TI].
|
||
// – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance
|
||
// bitmap IBI shall be placed at SBREG[SI, TI].
|
||
// – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol
|
||
// instance bitmap IBI shall be placed at SBREG[SI, TI].
|
||
// – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol
|
||
// instance bitmap IBI shall be placed at SBREG[SI, TI].
|
||
// • If TRANSPOSED is 1, then:
|
||
// – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap
|
||
// IBI shall be placed at SBREG[TI, SI].
|
||
// – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance
|
||
// bitmap IBI shall be placed at SBREG[TI, SI].
|
||
// – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol
|
||
// instance bitmap IBI shall be placed at SBREG[TI, SI].
|
||
// – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol
|
||
// instance bitmap IBI shall be placed at SBREG[TI, SI].
|
||
// If any part of IBI, when placed at this location, lies outside the bounds of SBREG, then ignore
|
||
// this part of IBI in step 3 c) ix)."
|
||
// Implementor's note: The spec means "ignore this part of IBI in step 3 c) x)" in 3c viii)'s last sentence.
|
||
// FIXME: Support all reference corners and transpose values.
|
||
if (!inputs.is_transposed) {
|
||
switch (inputs.reference_corner) {
|
||
case TopLeft:
|
||
break;
|
||
case TopRight:
|
||
s_instance -= symbol.width() - 1;
|
||
break;
|
||
case BottomLeft:
|
||
t_instance -= symbol.height() - 1;
|
||
break;
|
||
case BottomRight:
|
||
s_instance -= symbol.width() - 1;
|
||
t_instance -= symbol.height() - 1;
|
||
break;
|
||
}
|
||
} else {
|
||
TODO();
|
||
}
|
||
|
||
// "ix) If COLEXTFLAG is 1, set the colour specified by SBCOLS[SBFGCOLID[NINSTANCES]]
|
||
// to the foreground colour of the symbol instance bitmap IBI."
|
||
// FIXME: Implement support for colors one day.
|
||
|
||
// "x) Draw IBI into SBREG. Combine each pixel of IBI with the current value of the corresponding
|
||
// pixel in SBREG, using the combination operator specified by SBCOMBOP. Write the results
|
||
// of each combination into that pixel in SBREG."
|
||
composite_bitbuffer(*result, symbol, { s_instance, t_instance }, inputs.operator_);
|
||
|
||
// "xi) Update CURS as follows:
|
||
// • If TRANSPOSED is 0, and REFCORNER is TOPLEFT or BOTTOMLEFT, set:
|
||
// CURS = CURS + WI –1
|
||
// • If TRANSPOSED is 1, and REFCORNER is TOPLEFT or TOPRIGHT, set:
|
||
// CURS = CURS + HI –1
|
||
// • Otherwise, do not change CURS in this step."
|
||
if (!inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == BottomLeft))
|
||
cur_s += symbol.width() - 1;
|
||
if (inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == TopRight))
|
||
cur_s += symbol.height() - 1;
|
||
|
||
// "xii) Set:
|
||
// NINSTANCES = NINSTANCES + 1"
|
||
++n_instances;
|
||
}
|
||
// "d) When the strip has been completely decoded, decode the next strip."
|
||
// (Done in the next loop iteration.)
|
||
}
|
||
|
||
// "5) After all the strips have been decoded, the current contents of SBREG are the results that shall be
|
||
// obtained by every decoder, whether it performs this exact sequence of steps or not."
|
||
return result;
|
||
}
|
||
|
||
// 6.5.2 Input parameters
|
||
// Table 13 – Parameters for the symbol dictionary decoding procedure
|
||
struct SymbolDictionaryDecodingInputParameters {
|
||
|
||
bool uses_huffman_encoding { false }; // "SDHUFF" in spec.
|
||
bool uses_refinement_or_aggregate_coding { false }; // "SDREFAGG" in spec.
|
||
|
||
Vector<NonnullRefPtr<Symbol>> input_symbols; // "SDNUMINSYMS", "SDINSYMS" in spec.
|
||
|
||
u32 number_of_new_symbols { 0 }; // "SDNUMNEWSYMS" in spec.
|
||
u32 number_of_exported_symbols { 0 }; // "SDNUMEXSYMS" in spec.
|
||
|
||
// FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST
|
||
|
||
u8 symbol_template { 0 }; // "SDTEMPLATE" in spec.
|
||
Array<AdaptiveTemplatePixel, 4> adaptive_template_pixels; // "SDATX" / "SDATY" in spec.
|
||
|
||
u8 refinement_template { 0 }; // "SDRTEMPLATE" in spec;
|
||
Array<AdaptiveTemplatePixel, 2> refinement_adaptive_template_pixels; // "SDRATX" / "SDRATY" in spec.
|
||
};
|
||
|
||
// 6.5 Symbol Dictionary Decoding Procedure
|
||
static ErrorOr<Vector<NonnullRefPtr<Symbol>>> symbol_dictionary_decoding_procedure(SymbolDictionaryDecodingInputParameters const& inputs, ReadonlyBytes data)
|
||
{
|
||
if (inputs.uses_huffman_encoding)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman symbol dictionaries yet");
|
||
|
||
auto decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data));
|
||
Vector<JBIG2::ArithmeticDecoder::Context> contexts;
|
||
contexts.resize(1 << number_of_context_bits_for_template(inputs.symbol_template));
|
||
|
||
// 6.5.6 Height class delta height
|
||
// "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDH.
|
||
// If SDHUFF is 0, decode a value using the IADH integer arithmetic decoding procedure (see Annex A)."
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder delta_height_integer_decoder(decoder);
|
||
auto read_delta_height = [&]() -> i32 {
|
||
// No OOB values for delta height.
|
||
return delta_height_integer_decoder.decode().value();
|
||
};
|
||
|
||
// 6.5.7 Delta width
|
||
// "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDW.
|
||
// If SDHUFF is 0, decode a value using the IADW integer arithmetic decoding procedure (see Annex A).
|
||
// In either case it is possible that the result of this decoding is the out-of-band value OOB."
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
JBIG2::ArithmeticIntegerDecoder delta_width_integer_decoder(decoder);
|
||
auto read_delta_width = [&]() -> Optional<i32> {
|
||
return delta_width_integer_decoder.decode();
|
||
};
|
||
|
||
// 6.5.8 Symbol bitmap
|
||
// "This field is only present if SDHUFF = 0 or SDREFAGG = 1. This field takes one of two forms; SDREFAGG
|
||
// determines which form is used."
|
||
|
||
// 6.5.8.2.1 Number of symbol instances in aggregation
|
||
// If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFAGGINST.
|
||
// If SDHUFF is 0, decode a value using the IAAI integer arithmetic decoding procedure (see Annex A).
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
Optional<JBIG2::ArithmeticIntegerDecoder> number_of_symbol_instances_decoder;
|
||
auto read_number_of_symbol_instances = [&]() -> i32 {
|
||
if (!number_of_symbol_instances_decoder.has_value())
|
||
number_of_symbol_instances_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
|
||
return number_of_symbol_instances_decoder->decode().value();
|
||
};
|
||
|
||
// 6.5.8.1 Direct-coded symbol bitmap
|
||
Optional<JBIG2::ArithmeticIntegerIDDecoder> id_decoder;
|
||
Optional<JBIG2::ArithmeticIntegerDecoder> refinement_x_offset_decoder;
|
||
Optional<JBIG2::ArithmeticIntegerDecoder> refinement_y_offset_decoder;
|
||
|
||
// FIXME: When we implement REFAGGNINST > 1 support, do these need to be shared with
|
||
// text_region_decoding_procedure() then?
|
||
Vector<JBIG2::ArithmeticDecoder::Context> refinement_contexts;
|
||
|
||
// This belongs in 6.5.5 1) below, but also needs to be captured by read_bitmap here.
|
||
Vector<NonnullRefPtr<Symbol>> new_symbols;
|
||
|
||
auto read_symbol_bitmap = [&](u32 width, u32 height) -> ErrorOr<NonnullOwnPtr<BitBuffer>> {
|
||
// "If SDREFAGG is 0, then decode the symbol's bitmap using a generic region decoding procedure as described in 6.2.
|
||
// Set the parameters to this decoding procedure as shown in Table 16."
|
||
if (!inputs.uses_refinement_or_aggregate_coding) {
|
||
// Table 16 – Parameters used to decode a symbol's bitmap using generic bitmap decoding
|
||
GenericRegionDecodingInputParameters generic_inputs;
|
||
generic_inputs.is_modified_modified_read = false;
|
||
generic_inputs.region_width = width;
|
||
generic_inputs.region_height = height;
|
||
generic_inputs.gb_template = inputs.symbol_template;
|
||
generic_inputs.is_extended_reference_template_used = false; // Missing from spec in table 16.
|
||
for (int i = 0; i < 4; ++i)
|
||
generic_inputs.adaptive_template_pixels[i] = inputs.adaptive_template_pixels[i];
|
||
generic_inputs.arithmetic_decoder = &decoder;
|
||
return generic_region_decoding_procedure(generic_inputs, {}, contexts);
|
||
}
|
||
|
||
// 6.5.8.2 Refinement/aggregate-coded symbol bitmap
|
||
// "1) Decode the number of symbol instances contained in the aggregation, as specified in 6.5.8.2.1. Let REFAGGNINST be the value decoded."
|
||
auto number_of_symbol_instances = read_number_of_symbol_instances(); // "REFAGGNINST" in spec.
|
||
dbgln_if(JBIG2_DEBUG, "Number of symbol instances: {}", number_of_symbol_instances);
|
||
|
||
if (number_of_symbol_instances > 1) {
|
||
// "2) If REFAGGNINST is greater than one, then decode the bitmap itself using a text region decoding procedure
|
||
// as described in 6.4. Set the parameters to this decoding procedure as shown in Table 17."
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode symbol bitmaps with more than one symbol instance yet");
|
||
}
|
||
|
||
// "3) If REFAGGNINST is equal to one, then decode the bitmap as described in 6.5.8.2.2."
|
||
|
||
// 6.5.8.2.3 Setting SBSYMCODES and SBSYMCODELEN
|
||
// FIXME: Implement support for SDHUFF = 1
|
||
u32 code_length = ceil(log2(inputs.input_symbols.size() + inputs.number_of_new_symbols));
|
||
|
||
// 6.5.8.2.2 Decoding a bitmap when REFAGGNINST = 1
|
||
// FIXME: This is missing some setps for the SDHUFF = 1 case.
|
||
if (number_of_symbol_instances != 1)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of symbol instances");
|
||
|
||
if (!id_decoder.has_value())
|
||
id_decoder = JBIG2::ArithmeticIntegerIDDecoder(decoder, code_length);
|
||
u32 symbol_id = id_decoder->decode();
|
||
|
||
if (!refinement_x_offset_decoder.has_value())
|
||
refinement_x_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
|
||
i32 refinement_x_offset = refinement_x_offset_decoder->decode().value();
|
||
|
||
if (!refinement_y_offset_decoder.has_value())
|
||
refinement_y_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
|
||
i32 refinement_y_offset = refinement_y_offset_decoder->decode().value();
|
||
|
||
if (symbol_id >= inputs.input_symbols.size() && symbol_id - inputs.input_symbols.size() >= new_symbols.size())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Refinement/aggregate symbol ID out of range");
|
||
|
||
auto IBO = (symbol_id < inputs.input_symbols.size()) ? inputs.input_symbols[symbol_id] : new_symbols[symbol_id - inputs.input_symbols.size()];
|
||
// Table 18 – Parameters used to decode a symbol's bitmap when REFAGGNINST = 1
|
||
GenericRefinementRegionDecodingInputParameters refinement_inputs;
|
||
refinement_inputs.region_width = width;
|
||
refinement_inputs.region_height = height;
|
||
refinement_inputs.gr_template = inputs.refinement_template;
|
||
refinement_inputs.reference_bitmap = &IBO->bitmap();
|
||
refinement_inputs.reference_x_offset = refinement_x_offset;
|
||
refinement_inputs.reference_y_offset = refinement_y_offset;
|
||
refinement_inputs.is_typical_prediction_used = false;
|
||
refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels;
|
||
if (refinement_contexts.is_empty())
|
||
refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10));
|
||
return generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts);
|
||
};
|
||
|
||
// 6.5.5 Decoding the symbol dictionary
|
||
// "1) Create an array SDNEWSYMS of bitmaps, having SDNUMNEWSYMS entries."
|
||
// Done above read_bitmap().
|
||
|
||
// "2) If SDHUFF is 1 and SDREFAGG is 0, create an array SDNEWSYMWIDTHS of integers, having SDNUMNEWSYMS entries."
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
|
||
// "3) Set:
|
||
// HCHEIGHT = 0
|
||
// NSYMSDECODED = 0"
|
||
u32 height_class_height = 0;
|
||
u32 number_of_symbols_decoded = 0;
|
||
|
||
// "4) Decode each height class as follows:
|
||
// a) If NSYMSDECODED == SDNUMNEWSYMS then all the symbols in the dictionary have been decoded; proceed to step 5)."
|
||
while (number_of_symbols_decoded < inputs.number_of_new_symbols) {
|
||
// "b) Decode the height class delta height as described in 6.5.6. Let HCDH be the decoded value. Set:
|
||
// HCHEIGHT = HCEIGHT + HCDH
|
||
// SYMWIDTH = 0
|
||
// TOTWIDTH = 0
|
||
// HCFIRSTSYM = NSYMSDECODED"
|
||
i32 delta_height = read_delta_height();
|
||
height_class_height += delta_height;
|
||
u32 symbol_width = 0;
|
||
u32 total_width = 0;
|
||
u32 height_class_first_symbol = number_of_symbols_decoded;
|
||
// "c) Decode each symbol within the height class as follows:"
|
||
while (true) {
|
||
// "i) Decode the delta width for the symbol as described in 6.5.7."
|
||
auto opt_delta_width = read_delta_width();
|
||
// " If the result of this decoding is OOB then all the symbols in this height class have been decoded; proceed to step 4 d)."
|
||
if (!opt_delta_width.has_value())
|
||
break;
|
||
|
||
VERIFY(number_of_symbols_decoded < inputs.number_of_new_symbols);
|
||
// " Otherwise let DW be the decoded value and set:"
|
||
// SYMWIDTH = SYMWIDTH + DW
|
||
// TOTWIDTH = TOTWIDTH + SYMWIDTH"
|
||
i32 delta_width = opt_delta_width.value();
|
||
symbol_width += delta_width;
|
||
total_width += symbol_width;
|
||
|
||
// "ii) If SDHUFF is 0 or SDREFAGG is 1, then decode the symbol's bitmap as described in 6.5.8.
|
||
// Let BS be the decoded bitmap (this bitmap has width SYMWIDTH and height HCHEIGHT). Set:
|
||
// SDNEWSYMS[NSYMSDECODED] = BS"
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
// FIXME: Doing this eagerly is pretty wasteful. Decode on demand instead?
|
||
auto bitmap = TRY(read_symbol_bitmap(symbol_width, height_class_height));
|
||
new_symbols.append(Symbol::create(move(bitmap)));
|
||
|
||
// "iii) If SDHUFF is 1 and SDREFAGG is 0, then set:
|
||
// SDNEWSYMWIDTHS[NSYMSDECODED] = SYMWIDTH"
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
(void)total_width;
|
||
(void)height_class_first_symbol;
|
||
|
||
// "iv) Set:
|
||
// NSYMSDECODED = NSYMSDECODED + 1"
|
||
number_of_symbols_decoded++;
|
||
}
|
||
// d) If SDHUFF is 1 and SDREFAGG is 0, [...long text elided...]
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
}
|
||
|
||
// 5) Determine which symbol bitmaps are exported from this symbol dictionary, as described in 6.5.10. These
|
||
// bitmaps can be drawn from the symbols that are used as input to the symbol dictionary decoding
|
||
// procedure as well as the new symbols produced by the decoding procedure."
|
||
JBIG2::ArithmeticIntegerDecoder export_integer_decoder(decoder);
|
||
|
||
// 6.5.10 Exported symbols
|
||
Vector<bool> export_flags;
|
||
export_flags.resize(inputs.input_symbols.size() + inputs.number_of_new_symbols);
|
||
|
||
// "1) Set:
|
||
// EXINDEX = 0
|
||
// CUREXFLAG = 0"
|
||
u32 exported_index = 0;
|
||
bool current_export_flag = false;
|
||
|
||
do {
|
||
// "2) Decode a value using Table B.1 if SDHUFF is 1, or the IAEX integer arithmetic decoding procedure if
|
||
// SDHUFF is 0. Let EXRUNLENGTH be the decoded value."
|
||
// FIXME: Implement support for SDHUFF = 1.
|
||
i32 export_run_length = export_integer_decoder.decode().value(); // No OOB value.
|
||
|
||
// "3) Set EXFLAGS[EXINDEX] through EXFLAGS[EXINDEX + EXRUNLENGTH – 1] to CUREXFLAG.
|
||
// If EXRUNLENGTH = 0, then this step does not change any values."
|
||
for (int i = 0; i < export_run_length; ++i)
|
||
export_flags[exported_index + i] = current_export_flag;
|
||
|
||
// "4) Set:
|
||
// EXINDEX = EXINDEX + EXRUNLENGTH
|
||
// CUREXFLAG = NOT(CUREXFLAG)"
|
||
exported_index += export_run_length;
|
||
current_export_flag = !current_export_flag;
|
||
|
||
// 5) Repeat steps 2) through 4) until EXINDEX == SDNUMINSYMS + SDNUMNEWSYMS.
|
||
} while (exported_index < inputs.input_symbols.size() + inputs.number_of_new_symbols);
|
||
|
||
// "6) The array EXFLAGS now contains 1 for each symbol that is exported from the dictionary, and 0 for each
|
||
// symbol that is not exported."
|
||
Vector<NonnullRefPtr<Symbol>> exported_symbols;
|
||
|
||
// "7) Set:
|
||
// I = 0
|
||
// J = 0
|
||
// 8) For each value of I from 0 to SDNUMINSYMS + SDNUMNEWSYMS – 1,"
|
||
for (size_t i = 0; i < inputs.input_symbols.size() + inputs.number_of_new_symbols; ++i) {
|
||
// "if EXFLAGS[I] == 1 then perform the following steps:"
|
||
if (!export_flags[i])
|
||
continue;
|
||
// "a) If I < SDNUMINSYMS then set:
|
||
// SDEXSYMS[J] = SDINSYMS[I]
|
||
// J = J + 1"
|
||
if (i < inputs.input_symbols.size())
|
||
exported_symbols.append(inputs.input_symbols[i]);
|
||
|
||
// "b) If I >= SDNUMINSYMS then set:
|
||
// SDEXSYMS[J] = SDNEWSYMS[I – SDNUMINSYMS]
|
||
// J = J + 1"
|
||
if (i >= inputs.input_symbols.size())
|
||
exported_symbols.append(move(new_symbols[i - inputs.input_symbols.size()]));
|
||
}
|
||
|
||
if (exported_symbols.size() != inputs.number_of_exported_symbols)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of exported symbols");
|
||
|
||
return exported_symbols;
|
||
}
|
||
|
||
static ErrorOr<void> decode_symbol_dictionary(JBIG2LoadingContext& context, SegmentData& segment)
|
||
{
|
||
// 7.4.2 Symbol dictionary segment syntax
|
||
|
||
// 7.4.2.1 Symbol dictionary segment data header
|
||
FixedMemoryStream stream(segment.data);
|
||
|
||
// 7.4.2.1.1 Symbol dictionary flags
|
||
u16 flags = TRY(stream.read_value<BigEndian<u16>>());
|
||
bool uses_huffman_encoding = (flags & 1) != 0; // "SDHUFF" in spec.
|
||
bool uses_refinement_or_aggregate_coding = (flags & 2) != 0; // "SDREFAGG" in spec.
|
||
|
||
u8 huffman_table_selection_for_height_differences = (flags >> 2) & 0b11; // "SDHUFFDH" in spec.
|
||
if (huffman_table_selection_for_height_differences == 2)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences");
|
||
if (!uses_huffman_encoding && huffman_table_selection_for_height_differences != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences");
|
||
|
||
u8 huffman_table_selection_for_width_differences = (flags >> 4) & 0b11; // "SDHUFFDW" in spec.
|
||
if (huffman_table_selection_for_width_differences == 2)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences");
|
||
if (!uses_huffman_encoding && huffman_table_selection_for_width_differences != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences");
|
||
|
||
bool uses_user_supplied_size_table = (flags >> 6) & 1; // "SDHUFFBMSIZE" in spec.
|
||
if (!uses_huffman_encoding && uses_user_supplied_size_table)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_size_table");
|
||
|
||
bool uses_user_supplied_aggregate_table = (flags >> 7) & 1; // "SDHUFFAGGINST" in spec.
|
||
if (!uses_huffman_encoding && uses_user_supplied_aggregate_table)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_aggregate_table");
|
||
|
||
bool bitmap_coding_context_used = (flags >> 8) & 1;
|
||
if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_used)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_used");
|
||
|
||
bool bitmap_coding_context_retained = (flags >> 9) & 1;
|
||
if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_retained)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_retained");
|
||
|
||
u8 template_used = (flags >> 10) & 0b11; // "SDTEMPLATE" in spec.
|
||
if (uses_huffman_encoding && template_used != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid template_used");
|
||
|
||
u8 refinement_template_used = (flags >> 12) & 0b11; // "SDREFTEMPLATE" in spec.
|
||
if (!uses_refinement_or_aggregate_coding && refinement_template_used != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template_used");
|
||
|
||
if (flags & 0b1110'0000'0000'0000)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid symbol dictionary flags");
|
||
|
||
// 7.4.2.1.2 Symbol dictionary AT flags
|
||
Array<AdaptiveTemplatePixel, 4> adaptive_template {};
|
||
if (!uses_huffman_encoding) {
|
||
int number_of_adaptive_template_pixels = template_used == 0 ? 4 : 1;
|
||
for (int i = 0; i < number_of_adaptive_template_pixels; ++i) {
|
||
adaptive_template[i].x = TRY(stream.read_value<i8>());
|
||
adaptive_template[i].y = TRY(stream.read_value<i8>());
|
||
}
|
||
}
|
||
|
||
// 7.4.2.1.3 Symbol dictionary refinement AT flags
|
||
Array<AdaptiveTemplatePixel, 2> adaptive_refinement_template {};
|
||
if (uses_refinement_or_aggregate_coding && refinement_template_used == 0) {
|
||
for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) {
|
||
adaptive_refinement_template[i].x = TRY(stream.read_value<i8>());
|
||
adaptive_refinement_template[i].y = TRY(stream.read_value<i8>());
|
||
}
|
||
}
|
||
|
||
// 7.4.2.1.4 Number of exported symbols (SDNUMEXSYMS)
|
||
u32 number_of_exported_symbols = TRY(stream.read_value<BigEndian<u32>>());
|
||
|
||
// 7.4.2.1.5 Number of new symbols (SDNUMNEWSYMS)
|
||
u32 number_of_new_symbols = TRY(stream.read_value<BigEndian<u32>>());
|
||
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_huffman_encoding={}", uses_huffman_encoding);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_refinement_or_aggregate_coding={}", uses_refinement_or_aggregate_coding);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_height_differences={}", huffman_table_selection_for_height_differences);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_width_differences={}", huffman_table_selection_for_width_differences);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_size_table={}", uses_user_supplied_size_table);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_aggregate_table={}", uses_user_supplied_aggregate_table);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_used={}", bitmap_coding_context_used);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_retained={}", bitmap_coding_context_retained);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: template_used={}", template_used);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: refinement_template_used={}", refinement_template_used);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_exported_symbols={}", number_of_exported_symbols);
|
||
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_new_symbols={}", number_of_new_symbols);
|
||
|
||
// 7.4.2.1.6 Symbol dictionary segment Huffman table selection
|
||
// FIXME
|
||
|
||
// 7.4.2.2 Decoding a symbol dictionary segment
|
||
// "1) Interpret its header, as described in 7.4.2.1."
|
||
// Done!
|
||
|
||
// "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments."
|
||
Vector<NonnullRefPtr<Symbol>> symbols;
|
||
for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) {
|
||
auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number);
|
||
if (!opt_referred_to_segment.has_value())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment refers to non-existent segment");
|
||
dbgln_if(JBIG2_DEBUG, "Symbol segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value());
|
||
auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()];
|
||
if (!referred_to_segment.symbols.has_value())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment referred-to segment without symbols");
|
||
symbols.extend(referred_to_segment.symbols.value());
|
||
}
|
||
|
||
// "3) If the "bitmap coding context used" bit in the header was 1, ..."
|
||
if (bitmap_coding_context_used)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode bitmap coding context segment yet");
|
||
|
||
// "4) If the "bitmap coding context used" bit in the header was 0, then, as described in E.3.7,
|
||
// reset all the arithmetic coding statistics for the generic region and generic refinement region decoding procedures to zero."
|
||
// Nothing to do.
|
||
|
||
// "5) Reset the arithmetic coding statistics for all the contexts of all the arithmetic integer coders to zero."
|
||
// FIXME
|
||
|
||
// "6) Invoke the symbol dictionary decoding procedure described in 6.5, with the parameters to the symbol dictionary decoding procedure set as shown in Table 31."
|
||
SymbolDictionaryDecodingInputParameters inputs;
|
||
inputs.uses_huffman_encoding = uses_huffman_encoding;
|
||
inputs.uses_refinement_or_aggregate_coding = uses_refinement_or_aggregate_coding;
|
||
inputs.input_symbols = move(symbols);
|
||
inputs.number_of_new_symbols = number_of_new_symbols;
|
||
inputs.number_of_exported_symbols = number_of_exported_symbols;
|
||
// FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST
|
||
inputs.symbol_template = template_used;
|
||
inputs.adaptive_template_pixels = adaptive_template;
|
||
inputs.refinement_template = refinement_template_used;
|
||
inputs.refinement_adaptive_template_pixels = adaptive_refinement_template;
|
||
auto result = TRY(symbol_dictionary_decoding_procedure(inputs, segment.data.slice(TRY(stream.tell()))));
|
||
|
||
// "7) If the "bitmap coding context retained" bit in the header was 1, then, as described in E.3.8, preserve the current contents
|
||
// of the arithmetic coding statistics for the generic region and generic refinement region decoding procedures."
|
||
if (bitmap_coding_context_retained)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot retain bitmap coding context yet");
|
||
|
||
segment.symbols = move(result);
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_intermediate_text_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate text region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_text_region(JBIG2LoadingContext& context, SegmentData const& segment)
|
||
{
|
||
// 7.4.3 Text region segment syntax
|
||
auto data = segment.data;
|
||
auto information_field = TRY(decode_region_segment_information_field(data));
|
||
data = data.slice(sizeof(information_field));
|
||
|
||
dbgln_if(JBIG2_DEBUG, "Text region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags);
|
||
|
||
FixedMemoryStream stream(data);
|
||
|
||
// 7.4.3.1.1 Text region segment flags
|
||
u16 text_region_segment_flags = TRY(stream.read_value<BigEndian<u16>>());
|
||
bool uses_huffman_encoding = (text_region_segment_flags & 1) != 0; // "SBHUFF" in spec.
|
||
bool uses_refinement_coding = (text_region_segment_flags >> 1) & 1; // "SBREFINE" in spec.
|
||
u8 log_strip_size = (text_region_segment_flags >> 2) & 3; // "LOGSBSTRIPS" in spec.
|
||
u8 strip_size = 1u << log_strip_size;
|
||
u8 reference_corner = (text_region_segment_flags >> 4) & 3; // "REFCORNER"
|
||
bool is_transposed = (text_region_segment_flags >> 6) & 1; // "TRANSPOSED" in spec.
|
||
u8 combination_operator = (text_region_segment_flags >> 7) & 3; // "SBCOMBOP" in spec.
|
||
if (combination_operator > 4)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid text region combination operator");
|
||
|
||
u8 default_pixel_value = (text_region_segment_flags >> 9) & 1; // "SBDEFPIXEL" in spec.
|
||
|
||
u8 delta_s_offset_value = (text_region_segment_flags >> 10) & 0x1f; // "SBDSOFFSET" in spec.
|
||
i8 delta_s_offset = delta_s_offset_value;
|
||
if (delta_s_offset_value & 0x10) {
|
||
// This is converting a 5-bit two's complement number ot i8.
|
||
// FIXME: There's probably a simpler way to do this? Probably just sign-extend by or-ing in the top 3 bits?
|
||
delta_s_offset_value = (~delta_s_offset_value + 1) & 0x1f;
|
||
delta_s_offset = -delta_s_offset_value;
|
||
}
|
||
|
||
u8 refinement_template = (text_region_segment_flags >> 15) != 0; // "SBRTEMPLATE" in spec.
|
||
if (!uses_refinement_coding && refinement_template != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template");
|
||
|
||
// 7.4.3.1.2 Text region segment Huffman flags
|
||
// "This field is only present if SBHUFF is 1."
|
||
// FIXME: Support this eventually.
|
||
if (uses_huffman_encoding)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet");
|
||
|
||
// 7.4.3.1.3 Text region refinement AT flags
|
||
// "This field is only present if SBREFINE is 1 and SBRTEMPLATE is 0."
|
||
Array<AdaptiveTemplatePixel, 2> adaptive_refinement_template {};
|
||
if (uses_refinement_coding && refinement_template == 0) {
|
||
for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) {
|
||
adaptive_refinement_template[i].x = TRY(stream.read_value<i8>());
|
||
adaptive_refinement_template[i].y = TRY(stream.read_value<i8>());
|
||
}
|
||
}
|
||
|
||
// 7.4.3.1.4 Number of symbol instances (SBNUMINSTANCES)
|
||
u32 number_of_symbol_instances = TRY(stream.read_value<BigEndian<u32>>());
|
||
|
||
// 7.4.3.1.5 Text region segment symbol ID Huffman decoding table
|
||
// "It is only present if SBHUFF is 1."
|
||
// FIXME: Support this eventually.
|
||
|
||
// 7.4.3.2 Decoding a text region segment
|
||
// "1) Interpret its header, as described in 7.4.3.1."
|
||
// Done!
|
||
|
||
// "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments."
|
||
Vector<NonnullRefPtr<Symbol>> symbols;
|
||
for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) {
|
||
auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number);
|
||
if (!opt_referred_to_segment.has_value())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment refers to non-existent segment");
|
||
dbgln_if(JBIG2_DEBUG, "Text segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value());
|
||
auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()];
|
||
if (!referred_to_segment.symbols.has_value())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment referred-to segment without symbols");
|
||
symbols.extend(referred_to_segment.symbols.value());
|
||
}
|
||
|
||
// "3) As described in E.3.7, reset all the arithmetic coding statistics to zero."
|
||
// FIXME
|
||
|
||
// "4) Invoke the text region decoding procedure described in 6.4, with the parameters to the text region decoding procedure set as shown in Table 34."
|
||
TextRegionDecodingInputParameters inputs;
|
||
inputs.uses_huffman_encoding = uses_huffman_encoding;
|
||
inputs.uses_refinement_coding = uses_refinement_coding;
|
||
inputs.default_pixel = default_pixel_value;
|
||
inputs.operator_ = static_cast<CombinationOperator>(combination_operator);
|
||
inputs.is_transposed = is_transposed;
|
||
inputs.reference_corner = static_cast<TextRegionDecodingInputParameters::Corner>(reference_corner);
|
||
inputs.delta_s_offset = delta_s_offset;
|
||
inputs.region_width = information_field.width;
|
||
inputs.region_height = information_field.height;
|
||
inputs.number_of_instances = number_of_symbol_instances;
|
||
inputs.size_of_symbol_instance_strips = strip_size;
|
||
inputs.id_symbol_code_length = ceil(log2(symbols.size()));
|
||
inputs.symbols = move(symbols);
|
||
// FIXME: Huffman tables.
|
||
inputs.refinement_template = refinement_template;
|
||
inputs.refinement_adaptive_template_pixels = adaptive_refinement_template;
|
||
|
||
auto result = TRY(text_region_decoding_procedure(inputs, data.slice(TRY(stream.tell()))));
|
||
|
||
composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator());
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_pattern_dictionary(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode pattern dictionary yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_intermediate_halftone_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate halftone region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_halftone_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate halftone region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_lossless_halftone_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless halftone region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_intermediate_generic_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_generic_region(JBIG2LoadingContext& context, SegmentData const& segment)
|
||
{
|
||
// 7.4.6 Generic region segment syntax
|
||
auto data = segment.data;
|
||
auto information_field = TRY(decode_region_segment_information_field(data));
|
||
data = data.slice(sizeof(information_field));
|
||
|
||
dbgln_if(JBIG2_DEBUG, "Generic region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags);
|
||
|
||
// 7.4.6.2 Generic region segment flags
|
||
if (data.is_empty())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No segment data");
|
||
u8 flags = data[0];
|
||
bool uses_mmr = (flags & 1) != 0;
|
||
u8 arithmetic_coding_template = (flags >> 1) & 3; // "GBTEMPLATE"
|
||
bool typical_prediction_generic_decoding_on = (flags >> 3) & 1; // "TPGDON"; "TPGD" is short for "Typical Prediction for Generic Direct coding"
|
||
bool uses_extended_reference_template = (flags >> 4) & 1; // "EXTTEMPLATE"
|
||
if (flags & 0b1110'0000)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid flags");
|
||
data = data.slice(sizeof(flags));
|
||
|
||
// 7.4.6.3 Generic region segment AT flags
|
||
Array<AdaptiveTemplatePixel, 12> adaptive_template_pixels {};
|
||
if (!uses_mmr) {
|
||
dbgln_if(JBIG2_DEBUG, "Non-MMR generic region, GBTEMPLATE={} TPGDON={} EXTTEMPLATE={}", arithmetic_coding_template, typical_prediction_generic_decoding_on, uses_extended_reference_template);
|
||
|
||
if (arithmetic_coding_template == 0 && uses_extended_reference_template) {
|
||
// This was added in T.88 Amendment 2 (https://www.itu.int/rec/T-REC-T.88-200306-S!Amd2/en) mid-2003.
|
||
// I haven't seen it being used in the wild, and the spec says "32-byte field as shown below" and then shows 24 bytes,
|
||
// so it's not clear how much data to read.
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: GBTEMPLATE=0 EXTTEMPLATE=1 not yet implemented");
|
||
}
|
||
|
||
size_t number_of_adaptive_template_pixels = arithmetic_coding_template == 0 ? 4 : 1;
|
||
if (data.size() < 2 * number_of_adaptive_template_pixels)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No adaptive template data");
|
||
for (size_t i = 0; i < number_of_adaptive_template_pixels; ++i) {
|
||
adaptive_template_pixels[i].x = static_cast<i8>(data[2 * i]);
|
||
adaptive_template_pixels[i].y = static_cast<i8>(data[2 * i + 1]);
|
||
}
|
||
data = data.slice(2 * number_of_adaptive_template_pixels);
|
||
}
|
||
|
||
// 7.4.6.4 Decoding a generic region segment
|
||
// "1) Interpret its header, as described in 7.4.6.1"
|
||
// Done above.
|
||
// "2) As described in E.3.7, reset all the arithmetic coding statistics to zero."
|
||
Vector<JBIG2::ArithmeticDecoder::Context> contexts;
|
||
contexts.resize(1 << number_of_context_bits_for_template(arithmetic_coding_template));
|
||
|
||
// "3) Invoke the generic region decoding procedure described in 6.2, with the parameters to the generic region decoding procedure set as shown in Table 37."
|
||
GenericRegionDecodingInputParameters inputs;
|
||
inputs.is_modified_modified_read = uses_mmr;
|
||
inputs.region_width = information_field.width;
|
||
inputs.region_height = information_field.height;
|
||
inputs.gb_template = arithmetic_coding_template;
|
||
inputs.is_typical_prediction_used = typical_prediction_generic_decoding_on;
|
||
inputs.is_extended_reference_template_used = uses_extended_reference_template;
|
||
inputs.skip_pattern = OptionalNone {};
|
||
inputs.adaptive_template_pixels = adaptive_template_pixels;
|
||
|
||
Optional<JBIG2::ArithmeticDecoder> decoder;
|
||
if (!uses_mmr) {
|
||
decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data));
|
||
inputs.arithmetic_decoder = &decoder.value();
|
||
}
|
||
|
||
auto result = TRY(generic_region_decoding_procedure(inputs, data, contexts));
|
||
|
||
// 8.2 Page image composition step 5)
|
||
if (information_field.x_location + information_field.width > (u32)context.page.size.width()
|
||
|| information_field.y_location + information_field.height > (u32)context.page.size.height()) {
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Region bounds outsize of page bounds");
|
||
}
|
||
|
||
composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator());
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_intermediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic refinement region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate generic refinement region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_immediate_lossless_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless generic refinement region yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_page_information(JBIG2LoadingContext& context, SegmentData const& segment)
|
||
{
|
||
// 7.4.8 Page information segment syntax and 8.1 Decoder model steps 1) - 3).
|
||
|
||
// "1) Decode the page information segment.""
|
||
auto page_information = TRY(decode_page_information_segment(segment.data));
|
||
|
||
bool page_is_striped = (page_information.striping_information & 0x80) != 0;
|
||
if (page_information.bitmap_height == 0xffff'ffff && !page_is_striped)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Non-striped bitmaps of indeterminate height not allowed");
|
||
|
||
u16 maximum_stripe_height = page_information.striping_information & 0x7F;
|
||
u8 default_color = (page_information.flags >> 2) & 1;
|
||
u8 default_combination_operator = (page_information.flags >> 3) & 3;
|
||
context.page.default_combination_operator = static_cast<CombinationOperator>(default_combination_operator);
|
||
|
||
dbgln_if(JBIG2_DEBUG, "Page information: width={}, height={}, is_striped={}, max_stripe_height={}, default_color={}, default_combination_operator={}", page_information.bitmap_width, page_information.bitmap_height, page_is_striped, maximum_stripe_height, default_color, default_combination_operator);
|
||
|
||
// FIXME: Do something with the other fields in page_information.
|
||
|
||
// "2) Create the page buffer, of the size given in the page information segment.
|
||
//
|
||
// If the page height is unknown, then this is not possible. However, in this case the page must be striped,
|
||
// and the maximum stripe height specified, and the initial page buffer can be created with height initially
|
||
// equal to this maximum stripe height."
|
||
size_t height = page_information.bitmap_height;
|
||
if (height == 0xffff'ffff)
|
||
height = maximum_stripe_height;
|
||
context.page.bits = TRY(BitBuffer::create(page_information.bitmap_width, height));
|
||
|
||
// "3) Fill the page buffer with the page's default pixel value."
|
||
context.page.bits->fill(default_color != 0);
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_end_of_page(JBIG2LoadingContext&, SegmentData const& segment)
|
||
{
|
||
// 7.4.9 End of page segment syntax
|
||
if (segment.data.size() != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of page segment has non-zero size");
|
||
// FIXME: If the page had unknown height, check that previous segment was end-of-stripe.
|
||
// FIXME: Maybe mark page as completed and error if we see more segments for it?
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_end_of_stripe(JBIG2LoadingContext&, SegmentData const& segment)
|
||
{
|
||
// 7.4.10 End of stripe segment syntax
|
||
// "The segment data of an end of stripe segment consists of one four-byte value, specifying the Y coordinate of the end row."
|
||
if (segment.data.size() != 4)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of strip segment has wrong size");
|
||
|
||
// FIXME: Once we implement support for images with initially indeterminate height, we need these values to determine the height at the end.
|
||
u32 y_coordinate = *reinterpret_cast<BigEndian<u32> const*>(segment.data.data());
|
||
dbgln_if(JBIG2_DEBUG, "End of stripe: y={}", y_coordinate);
|
||
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_end_of_file(JBIG2LoadingContext&, SegmentData const& segment)
|
||
{
|
||
// 7.4.11 End of file segment syntax
|
||
if (segment.data.size() != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment has non-zero size");
|
||
return {};
|
||
}
|
||
|
||
static ErrorOr<void> decode_profiles(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode profiles yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_tables(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode tables yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_color_palette(JBIG2LoadingContext&, SegmentData const&)
|
||
{
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode color palette yet");
|
||
}
|
||
|
||
static ErrorOr<void> decode_extension(JBIG2LoadingContext&, SegmentData const& segment)
|
||
{
|
||
// 7.4.14 Extension segment syntax
|
||
FixedMemoryStream stream { segment.data };
|
||
|
||
enum ExtensionType {
|
||
SingleByteCodedComment = 0x20000000,
|
||
MultiByteCodedComment = 0x20000002,
|
||
};
|
||
u32 type = TRY(stream.read_value<BigEndian<u32>>());
|
||
|
||
auto read_string = [&]<class T>() -> ErrorOr<Vector<T>> {
|
||
Vector<T> result;
|
||
do {
|
||
result.append(TRY(stream.read_value<BigEndian<T>>()));
|
||
} while (result.last());
|
||
result.take_last();
|
||
return result;
|
||
};
|
||
|
||
switch (type) {
|
||
case SingleByteCodedComment: {
|
||
// 7.4.15.1 Single-byte coded comment
|
||
// Pairs of zero-terminated ISO/IEC 8859-1 (latin1) pairs, terminated by another \0.
|
||
while (true) {
|
||
auto first_bytes = TRY(read_string.template operator()<u8>());
|
||
if (first_bytes.is_empty())
|
||
break;
|
||
|
||
auto second_bytes = TRY(read_string.template operator()<u8>());
|
||
|
||
auto first = TRY(TextCodec::decoder_for("ISO-8859-1"sv)->to_utf8(StringView { first_bytes }));
|
||
auto second = TRY(TextCodec::decoder_for("ISO-8859-1"sv)->to_utf8(StringView { second_bytes }));
|
||
dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second);
|
||
}
|
||
if (!stream.is_eof())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after SingleByteCodedComment");
|
||
return {};
|
||
}
|
||
case MultiByteCodedComment: {
|
||
// 7.4.15.2 Multi-byte coded comment
|
||
// Pairs of (two-byte-)zero-terminated UCS-2 pairs, terminated by another \0\0.
|
||
while (true) {
|
||
auto first_ucs2 = TRY(read_string.template operator()<u16>());
|
||
if (first_ucs2.is_empty())
|
||
break;
|
||
|
||
auto second_ucs2 = TRY(read_string.template operator()<u16>());
|
||
|
||
auto first = TRY(Utf16View(first_ucs2).to_utf8());
|
||
auto second = TRY(Utf16View(second_ucs2).to_utf8());
|
||
dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second);
|
||
}
|
||
if (!stream.is_eof())
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after MultiByteCodedComment");
|
||
return {};
|
||
}
|
||
}
|
||
|
||
// FIXME: If bit 31 in `type` is not set, the extension isn't necessary, and we could ignore it.
|
||
dbgln("JBIG2ImageDecoderPlugin: Unknown extension type {:#x}", type);
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown extension type");
|
||
}
|
||
|
||
static ErrorOr<void> decode_data(JBIG2LoadingContext& context)
|
||
{
|
||
TRY(warn_about_multiple_pages(context));
|
||
|
||
for (size_t i = 0; i < context.segments.size(); ++i) {
|
||
auto& segment = context.segments[i];
|
||
|
||
if (segment.header.page_association != 0 && segment.header.page_association != 1)
|
||
continue;
|
||
|
||
switch (segment.header.type) {
|
||
case SegmentType::SymbolDictionary:
|
||
TRY(decode_symbol_dictionary(context, segment));
|
||
break;
|
||
case SegmentType::IntermediateTextRegion:
|
||
TRY(decode_intermediate_text_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateTextRegion:
|
||
case SegmentType::ImmediateLosslessTextRegion:
|
||
// 7.4.3 Text region segment syntax
|
||
// "The data parts of all three of the text region segment types ("intermediate text region", "immediate text region" and
|
||
// "immediate lossless text region") are coded identically, but are acted upon differently, see 8.2."
|
||
// But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell,
|
||
// and calling the immediate text region handler for immediate lossless text regions seems to do the right thing (?).
|
||
TRY(decode_immediate_text_region(context, segment));
|
||
break;
|
||
case SegmentType::PatternDictionary:
|
||
TRY(decode_pattern_dictionary(context, segment));
|
||
break;
|
||
case SegmentType::IntermediateHalftoneRegion:
|
||
TRY(decode_intermediate_halftone_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateHalftoneRegion:
|
||
TRY(decode_immediate_halftone_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateLosslessHalftoneRegion:
|
||
TRY(decode_immediate_lossless_halftone_region(context, segment));
|
||
break;
|
||
case SegmentType::IntermediateGenericRegion:
|
||
TRY(decode_intermediate_generic_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateGenericRegion:
|
||
case SegmentType::ImmediateLosslessGenericRegion:
|
||
// 7.4.6 Generic region segment syntax
|
||
// "The data parts of all three of the generic region segment types ("intermediate generic region", "immediate generic region" and
|
||
// "immediate lossless generic region") are coded identically, but are acted upon differently, see 8.2."
|
||
// But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell,
|
||
// and calling the immediate generic region handler for immediate generic lossless regions seems to do the right thing (?).
|
||
TRY(decode_immediate_generic_region(context, segment));
|
||
break;
|
||
case SegmentType::IntermediateGenericRefinementRegion:
|
||
TRY(decode_intermediate_generic_refinement_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateGenericRefinementRegion:
|
||
TRY(decode_immediate_generic_refinement_region(context, segment));
|
||
break;
|
||
case SegmentType::ImmediateLosslessGenericRefinementRegion:
|
||
TRY(decode_immediate_lossless_generic_refinement_region(context, segment));
|
||
break;
|
||
case SegmentType::PageInformation:
|
||
TRY(decode_page_information(context, segment));
|
||
break;
|
||
case SegmentType::EndOfPage:
|
||
TRY(decode_end_of_page(context, segment));
|
||
break;
|
||
case SegmentType::EndOfStripe:
|
||
TRY(decode_end_of_stripe(context, segment));
|
||
break;
|
||
case SegmentType::EndOfFile:
|
||
TRY(decode_end_of_file(context, segment));
|
||
// "If a file contains an end of file segment, it must be the last segment."
|
||
if (i != context.segments.size() - 1)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment not last segment");
|
||
break;
|
||
case SegmentType::Profiles:
|
||
TRY(decode_profiles(context, segment));
|
||
break;
|
||
case SegmentType::Tables:
|
||
TRY(decode_tables(context, segment));
|
||
break;
|
||
case SegmentType::ColorPalette:
|
||
TRY(decode_color_palette(context, segment));
|
||
break;
|
||
case SegmentType::Extension:
|
||
TRY(decode_extension(context, segment));
|
||
break;
|
||
}
|
||
}
|
||
|
||
return {};
|
||
}
|
||
|
||
JBIG2ImageDecoderPlugin::JBIG2ImageDecoderPlugin()
|
||
{
|
||
m_context = make<JBIG2LoadingContext>();
|
||
}
|
||
|
||
IntSize JBIG2ImageDecoderPlugin::size()
|
||
{
|
||
return m_context->page.size;
|
||
}
|
||
|
||
bool JBIG2ImageDecoderPlugin::sniff(ReadonlyBytes data)
|
||
{
|
||
return data.starts_with(id_string);
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JBIG2ImageDecoderPlugin::create(ReadonlyBytes data)
|
||
{
|
||
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin()));
|
||
TRY(decode_jbig2_header(*plugin->m_context, data));
|
||
|
||
data = data.slice(sizeof(id_string) + sizeof(u8) + (plugin->m_context->number_of_pages.has_value() ? sizeof(u32) : 0));
|
||
TRY(decode_segment_headers(*plugin->m_context, data));
|
||
|
||
TRY(scan_for_page_size(*plugin->m_context));
|
||
|
||
return plugin;
|
||
}
|
||
|
||
ErrorOr<ImageFrameDescriptor> JBIG2ImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
|
||
{
|
||
// FIXME: Use this for multi-page JBIG2 files?
|
||
if (index != 0)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid frame index");
|
||
|
||
if (m_context->state == JBIG2LoadingContext::State::Error)
|
||
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoding failed");
|
||
|
||
if (m_context->state < JBIG2LoadingContext::State::Decoded) {
|
||
auto result = decode_data(*m_context);
|
||
if (result.is_error()) {
|
||
m_context->state = JBIG2LoadingContext::State::Error;
|
||
return result.release_error();
|
||
}
|
||
m_context->state = JBIG2LoadingContext::State::Decoded;
|
||
}
|
||
|
||
auto bitmap = TRY(m_context->page.bits->to_gfx_bitmap());
|
||
return ImageFrameDescriptor { move(bitmap), 0 };
|
||
}
|
||
|
||
ErrorOr<ByteBuffer> JBIG2ImageDecoderPlugin::decode_embedded(Vector<ReadonlyBytes> data)
|
||
{
|
||
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin()));
|
||
plugin->m_context->organization = Organization::Embedded;
|
||
|
||
for (auto const& segment_data : data)
|
||
TRY(decode_segment_headers(*plugin->m_context, segment_data));
|
||
|
||
TRY(scan_for_page_size(*plugin->m_context));
|
||
TRY(decode_data(*plugin->m_context));
|
||
|
||
return plugin->m_context->page.bits->to_byte_buffer();
|
||
}
|
||
|
||
}
|