/* * Copyright (c) 2024, Nico Weber * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include // Spec: ITU-T_T_88__08_2018.pdf in the zip file here: // https://www.itu.int/rec/T-REC-T.88-201808-I // Annex H has a datastream example. namespace Gfx { namespace JBIG2 { // Table E.1 – Qe values and probability estimation process // See also E.1.2 Coding conventions and approximations // and E.2.5 Probability estimation. struct QeEntry { u16 qe; // Sub-interval for the less probable symbol. u16 nmps; // Next index if the more probable symbol is decoded u16 nlps; // Next index if the less probable symbol is decoded u16 switch_flag; // See second-to-last paragraph in E.1.2. }; constexpr auto qe_table = to_array({ { 0x5601, 1, 1, 1 }, { 0x3401, 2, 6, 0 }, { 0x1801, 3, 9, 0 }, { 0x0AC1, 4, 12, 0 }, { 0x0521, 5, 29, 0 }, { 0x0221, 38, 33, 0 }, { 0x5601, 7, 6, 1 }, { 0x5401, 8, 14, 0 }, { 0x4801, 9, 14, 0 }, { 0x3801, 10, 14, 0 }, { 0x3001, 11, 17, 0 }, { 0x2401, 12, 18, 0 }, { 0x1C01, 13, 20, 0 }, { 0x1601, 29, 21, 0 }, { 0x5601, 15, 14, 1 }, { 0x5401, 16, 14, 0 }, { 0x5101, 17, 15, 0 }, { 0x4801, 18, 16, 0 }, { 0x3801, 19, 17, 0 }, { 0x3401, 20, 18, 0 }, { 0x3001, 21, 19, 0 }, { 0x2801, 22, 19, 0 }, { 0x2401, 23, 20, 0 }, { 0x2201, 24, 21, 0 }, { 0x1C01, 25, 22, 0 }, { 0x1801, 26, 23, 0 }, { 0x1601, 27, 24, 0 }, { 0x1401, 28, 25, 0 }, { 0x1201, 29, 26, 0 }, { 0x1101, 30, 27, 0 }, { 0x0AC1, 31, 28, 0 }, { 0x09C1, 32, 29, 0 }, { 0x08A1, 33, 30, 0 }, { 0x0521, 34, 31, 0 }, { 0x0441, 35, 32, 0 }, { 0x02A1, 36, 33, 0 }, { 0x0221, 37, 34, 0 }, { 0x0141, 38, 35, 0 }, { 0x0111, 39, 36, 0 }, { 0x0085, 40, 37, 0 }, { 0x0049, 41, 38, 0 }, { 0x0025, 42, 39, 0 }, { 0x0015, 43, 40, 0 }, { 0x0009, 44, 41, 0 }, { 0x0005, 45, 42, 0 }, { 0x0001, 45, 43, 0 }, { 0x5601, 46, 46, 0 }, }); ErrorOr ArithmeticDecoder::initialize(ReadonlyBytes data) { ArithmeticDecoder decoder { data }; decoder.INITDEC(); return decoder; } bool ArithmeticDecoder::get_next_bit(Context& context) { CX = &context; // Useful for comparing to Table H.1 – Encoder and decoder trace data. // dbg("I={} MPS={} A={:#x} C={:#x} CT={} B={:#x}", I(CX), MPS(CX), A, C, CT, B()); u8 D = DECODE(); // dbgln(" -> D={}", D); return D; } u16 ArithmeticDecoder::Qe(u16 index) { return qe_table[index].qe; } u8 ArithmeticDecoder::NMPS(u16 index) { return qe_table[index].nmps; } u8 ArithmeticDecoder::NLPS(u16 index) { return qe_table[index].nlps; } u8 ArithmeticDecoder::SWITCH(u16 index) { return qe_table[index].switch_flag; } u8 ArithmeticDecoder::B(size_t offset) const { // E.2.10 Minimization of the compressed data // "the convention is used in the decoder that when a marker code is encountered, // 1-bits (without bit stuffing) are supplied to the decoder until the coding interval is complete." if (BP + offset >= m_data.size()) return 0xFF; return m_data[BP + offset]; } void ArithmeticDecoder::INITDEC() { // E.3.5 Initialization of the decoder (INITDEC) // Figure G.1 – Initialization of the software conventions decoder // "BP, the pointer to the compressed data, is initialized to BPST (pointing to the first compressed byte)." auto const BPST = 0; BP = BPST; C = (B() ^ 0xFF) << 16; BYTEIN(); C = C << 7; CT = CT - 7; A = 0x8000; } u8 ArithmeticDecoder::DECODE() { // E.3.2 Decoding a decision (DECODE) // Figure G.2 – Decoding an MPS or an LPS in the software-conventions decoder u8 D; A = A - Qe(I(CX)); if (C < ((u32)A << 16)) { // `(C_high < A)` in spec if ((A & 0x8000) == 0) { D = MPS_EXCHANGE(); RENORMD(); } else { D = MPS(CX); } } else { C = C - ((u32)A << 16); // `C_high = C_high - A` in spec D = LPS_EXCHANGE(); RENORMD(); } return D; } u8 ArithmeticDecoder::MPS_EXCHANGE() { // Figure E.16 – Decoder MPS path conditional exchange procedure u8 D; if (A < Qe(I(CX))) { D = 1 - MPS(CX); if (SWITCH(I(CX)) == 1) { MPS(CX) = 1 - MPS(CX); } I(CX) = NLPS(I(CX)); } else { D = MPS(CX); I(CX) = NMPS(I(CX)); } return D; } u8 ArithmeticDecoder::LPS_EXCHANGE() { // Figure E.17 – Decoder LPS path conditional exchange procedure u8 D; if (A < Qe(I(CX))) { A = Qe(I(CX)); D = MPS(CX); I(CX) = NMPS(I(CX)); } else { A = Qe(I(CX)); D = 1 - MPS(CX); if (SWITCH(I(CX)) == 1) { MPS(CX) = 1 - MPS(CX); } I(CX) = NLPS(I(CX)); } return D; } void ArithmeticDecoder::RENORMD() { // E.3.3 Renormalization in the decoder (RENORMD) // Figure E.18 – Decoder renormalization procedure do { if (CT == 0) BYTEIN(); A = A << 1; C = C << 1; CT = CT - 1; } while ((A & 0x8000) == 0); } void ArithmeticDecoder::BYTEIN() { // E.3.4 Compressed data input (BYTEIN) // Figure G.3 – Inserting a new byte into the C register in the software-conventions decoder if (B() == 0xFF) { if (B(1) > 0x8F) { CT = 8; } else { BP = BP + 1; C = C + 0xFE00 - (B() << 9); CT = 7; } } else { BP = BP + 1; C = C + 0xFF00 - (B() << 8); CT = 8; } } // Annex A, Arithmetic integer decoding procedure class ArithmeticIntegerDecoder { public: ArithmeticIntegerDecoder(ArithmeticDecoder&); // A.2 Procedure for decoding values (except IAID) // Returns OptionalNone for OOB. Optional decode(); private: ArithmeticDecoder& m_decoder; u16 PREV { 0 }; Vector contexts; }; ArithmeticIntegerDecoder::ArithmeticIntegerDecoder(ArithmeticDecoder& decoder) : m_decoder(decoder) { contexts.resize(1 << 9); } Optional ArithmeticIntegerDecoder::decode() { // A.2 Procedure for decoding values (except IAID) // "1) Set: // PREV = 1" u16 PREV = 1; // "2) Follow the flowchart in Figure A.1. Decode each bit with CX equal to "IAx + PREV" where "IAx" represents the identifier // of the current arithmetic integer decoding procedure, "+" represents concatenation, and the rightmost 9 bits of PREV are used." auto decode_bit = [&]() { bool D = m_decoder.get_next_bit(contexts[PREV & 0x1FF]); // "3) After each bit is decoded: // If PREV < 256 set: // PREV = (PREV << 1) OR D // Otherwise set: // PREV = (((PREV << 1) OR D) AND 511) OR 256 // where D represents the value of the just-decoded bit. if (PREV < 256) PREV = (PREV << 1) | (u16)D; else PREV = (((PREV << 1) | (u16)D) & 511) | 256; return D; }; auto decode_bits = [&](int n) { u32 result = 0; for (int i = 0; i < n; ++i) result = (result << 1) | decode_bit(); return result; }; // Figure A.1 – Flowchart for the integer arithmetic decoding procedures (except IAID) u8 S = decode_bit(); u32 V; if (!decode_bit()) V = decode_bits(2); else if (!decode_bit()) V = decode_bits(4) + 4; else if (!decode_bit()) V = decode_bits(6) + 20; else if (!decode_bit()) V = decode_bits(8) + 84; else if (!decode_bit()) V = decode_bits(12) + 340; else V = decode_bits(32) + 4436; // "4) The sequence of bits decoded, interpreted according to Table A.1, gives the value that is the result of this invocation // of the integer arithmetic decoding procedure." if (S == 1 && V == 0) return {}; return S ? -V : V; } class ArithmeticIntegerIDDecoder { public: ArithmeticIntegerIDDecoder(ArithmeticDecoder&, u32 code_length); // A.3 The IAID decoding procedure u32 decode(); private: ArithmeticDecoder& m_decoder; u32 m_code_length { 0 }; Vector contexts; }; ArithmeticIntegerIDDecoder::ArithmeticIntegerIDDecoder(ArithmeticDecoder& decoder, u32 code_length) : m_decoder(decoder) , m_code_length(code_length) { contexts.resize(1 << (code_length + 1)); } u32 ArithmeticIntegerIDDecoder::decode() { // A.3 The IAID decoding procedure u32 prev = 1; for (u8 i = 0; i < m_code_length; ++i) { bool bit = m_decoder.get_next_bit(contexts[prev]); prev = (prev << 1) | bit; } prev = prev - (1 << m_code_length); return prev; } } static u8 number_of_context_bits_for_template(u8 template_) { if (template_ == 0) return 16; if (template_ == 1) return 13; VERIFY(template_ == 2 || template_ == 3); return 10; } // JBIG2 spec, Annex D, D.4.1 ID string static constexpr u8 id_string[] = { 0x97, 0x4A, 0x42, 0x32, 0x0D, 0x0A, 0x1A, 0x0A }; // 7.3 Segment types enum SegmentType { SymbolDictionary = 0, IntermediateTextRegion = 4, ImmediateTextRegion = 6, ImmediateLosslessTextRegion = 7, PatternDictionary = 16, IntermediateHalftoneRegion = 20, ImmediateHalftoneRegion = 22, ImmediateLosslessHalftoneRegion = 23, IntermediateGenericRegion = 36, ImmediateGenericRegion = 38, ImmediateLosslessGenericRegion = 39, IntermediateGenericRefinementRegion = 40, ImmediateGenericRefinementRegion = 42, ImmediateLosslessGenericRefinementRegion = 43, PageInformation = 48, EndOfPage = 49, EndOfStripe = 50, EndOfFile = 51, Profiles = 52, Tables = 53, ColorPalette = 54, Extension = 62, }; // Annex D enum class Organization { // D.1 Sequential organization Sequential, // D.2 Random-access organization RandomAccess, // D.3 Embedded organization Embedded, }; struct SegmentHeader { u32 segment_number { 0 }; SegmentType type { SegmentType::Extension }; Vector referred_to_segment_numbers; // 7.2.6 Segment page association // "The first page must be numbered "1". This field may contain a value of zero; this value indicates that this segment is not associated with any page." u32 page_association { 0 }; Optional data_length; }; class BitBuffer { public: static ErrorOr> create(size_t width, size_t height); bool get_bit(size_t x, size_t y) const; void set_bit(size_t x, size_t y, bool b); void fill(bool b); ErrorOr> to_gfx_bitmap() const; ErrorOr to_byte_buffer() const; size_t width() const { return m_width; } size_t height() const { return m_height; } private: BitBuffer(ByteBuffer, size_t width, size_t height, size_t pitch); ByteBuffer m_bits; size_t m_width { 0 }; size_t m_height { 0 }; size_t m_pitch { 0 }; }; ErrorOr> BitBuffer::create(size_t width, size_t height) { size_t pitch = ceil_div(width, 8ull); auto bits = TRY(ByteBuffer::create_uninitialized(pitch * height)); return adopt_nonnull_own_or_enomem(new (nothrow) BitBuffer(move(bits), width, height, pitch)); } bool BitBuffer::get_bit(size_t x, size_t y) const { VERIFY(x < m_width); VERIFY(y < m_height); size_t byte_offset = x / 8; size_t bit_offset = x % 8; u8 byte = m_bits[y * m_pitch + byte_offset]; byte = (byte >> (8 - 1 - bit_offset)) & 1; return byte != 0; } void BitBuffer::set_bit(size_t x, size_t y, bool b) { VERIFY(x < m_width); VERIFY(y < m_height); size_t byte_offset = x / 8; size_t bit_offset = x % 8; u8 byte = m_bits[y * m_pitch + byte_offset]; u8 mask = 1u << (8 - 1 - bit_offset); if (b) byte |= mask; else byte &= ~mask; m_bits[y * m_pitch + byte_offset] = byte; } void BitBuffer::fill(bool b) { u8 fill_byte = b ? 0xff : 0; for (auto& byte : m_bits.bytes()) byte = fill_byte; } ErrorOr> BitBuffer::to_gfx_bitmap() const { auto bitmap = TRY(Gfx::Bitmap::create(Gfx::BitmapFormat::BGRx8888, { m_width, m_height })); for (size_t y = 0; y < m_height; ++y) { for (size_t x = 0; x < m_width; ++x) { auto color = get_bit(x, y) ? Color::Black : Color::White; bitmap->set_pixel(x, y, color); } } return bitmap; } ErrorOr BitBuffer::to_byte_buffer() const { return ByteBuffer::copy(m_bits); } BitBuffer::BitBuffer(ByteBuffer bits, size_t width, size_t height, size_t pitch) : m_bits(move(bits)) , m_width(width) , m_height(height) , m_pitch(pitch) { } class Symbol : public RefCounted { public: static NonnullRefPtr create(NonnullOwnPtr bitmap) { return adopt_ref(*new Symbol(move(bitmap))); } BitBuffer const& bitmap() const { return *m_bitmap; } private: Symbol(NonnullOwnPtr bitmap) : m_bitmap(move(bitmap)) { } NonnullOwnPtr m_bitmap; }; struct SegmentData { SegmentHeader header; ReadonlyBytes data; // Set on dictionary segments after they've been decoded. Optional>> symbols; }; // 7.4.8.5 Page segment flags enum class CombinationOperator { Or = 0, And = 1, Xor = 2, XNor = 3, Replace = 4, }; static void composite_bitbuffer(BitBuffer& out, BitBuffer const& bitmap, Gfx::IntPoint position, CombinationOperator operator_) { size_t start_x = 0, end_x = bitmap.width(); size_t start_y = 0, end_y = bitmap.height(); if (position.x() < 0) { start_x = -position.x(); position.set_x(0); } if (position.y() < 0) { start_y = -position.y(); position.set_y(0); } if (position.x() + bitmap.width() > out.width()) end_x = out.width() - position.x(); if (position.y() + bitmap.height() > out.height()) end_y = out.height() - position.y(); for (size_t y = start_y; y < end_y; ++y) { for (size_t x = start_x; x < end_x; ++x) { bool bit = bitmap.get_bit(x, y); switch (operator_) { case CombinationOperator::Or: bit = bit || out.get_bit(position.x() + x, position.y() + y); break; case CombinationOperator::And: bit = bit && out.get_bit(position.x() + x, position.y() + y); break; case CombinationOperator::Xor: bit = bit ^ out.get_bit(position.x() + x, position.y() + y); break; case CombinationOperator::XNor: bit = !(bit ^ out.get_bit(position.x() + x, position.y() + y)); break; case CombinationOperator::Replace: // Nothing to do. break; } out.set_bit(position.x() + x, position.y() + y, bit); } } } struct Page { IntSize size; // This is never CombinationOperator::Replace for Pages. CombinationOperator default_combination_operator { CombinationOperator::Or }; OwnPtr bits; }; struct JBIG2LoadingContext { enum class State { NotDecoded = 0, Error, Decoded, }; State state { State::NotDecoded }; Organization organization { Organization::Sequential }; Page page; Optional number_of_pages; Vector segments; HashMap segments_by_number; }; static ErrorOr decode_jbig2_header(JBIG2LoadingContext& context, ReadonlyBytes data) { if (!JBIG2ImageDecoderPlugin::sniff(data)) return Error::from_string_literal("JBIG2LoadingContext: Invalid JBIG2 header"); FixedMemoryStream stream(data.slice(sizeof(id_string))); // D.4.2 File header flags u8 header_flags = TRY(stream.read_value()); if (header_flags & 0b11110000) return Error::from_string_literal("JBIG2LoadingContext: Invalid header flags"); context.organization = (header_flags & 1) ? Organization::Sequential : Organization::RandomAccess; dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Organization: {} ({})", (int)context.organization, context.organization == Organization::Sequential ? "Sequential" : "Random-access"); bool has_known_number_of_pages = (header_flags & 2) ? false : true; bool uses_templates_with_12_AT_pixels = (header_flags & 4) ? true : false; bool contains_colored_region_segments = (header_flags & 8) ? true : false; // FIXME: Do something with these? (void)uses_templates_with_12_AT_pixels; (void)contains_colored_region_segments; // D.4.3 Number of pages if (has_known_number_of_pages) { context.number_of_pages = TRY(stream.read_value>()); dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Number of pages: {}", context.number_of_pages.value()); } return {}; } static ErrorOr decode_segment_header(SeekableStream& stream) { // 7.2.2 Segment number u32 segment_number = TRY(stream.read_value>()); dbgln_if(JBIG2_DEBUG, "Segment number: {}", segment_number); // 7.2.3 Segment header flags u8 flags = TRY(stream.read_value()); SegmentType type = static_cast(flags & 0b11'1111); dbgln_if(JBIG2_DEBUG, "Segment type: {}", (int)type); bool segment_page_association_size_is_32_bits = (flags & 0b100'0000) != 0; bool segment_retained_only_by_itself_and_extension_segments = (flags & 0b1000'00000) != 0; // FIXME: Do something with these. (void)segment_page_association_size_is_32_bits; (void)segment_retained_only_by_itself_and_extension_segments; // 7.2.4 Referred-to segment count and retention flags u8 referred_to_segment_count_and_retention_flags = TRY(stream.read_value()); u32 count_of_referred_to_segments = referred_to_segment_count_and_retention_flags >> 5; if (count_of_referred_to_segments == 5 || count_of_referred_to_segments == 6) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid count_of_referred_to_segments"); u32 extra_count = 0; if (count_of_referred_to_segments == 7) { TRY(stream.seek(-1, SeekMode::FromCurrentPosition)); count_of_referred_to_segments = TRY(stream.read_value>()) & 0x1FFF'FFFF; extra_count = ceil_div(count_of_referred_to_segments + 1, 8); TRY(stream.seek(extra_count, SeekMode::FromCurrentPosition)); } dbgln_if(JBIG2_DEBUG, "Referred-to segment count: {}", count_of_referred_to_segments); // 7.2.5 Referred-to segment numbers Vector referred_to_segment_numbers; for (u32 i = 0; i < count_of_referred_to_segments; ++i) { u32 referred_to_segment_number; if (segment_number <= 256) referred_to_segment_number = TRY(stream.read_value()); else if (segment_number <= 65536) referred_to_segment_number = TRY(stream.read_value>()); else referred_to_segment_number = TRY(stream.read_value>()); referred_to_segment_numbers.append(referred_to_segment_number); dbgln_if(JBIG2_DEBUG, "Referred-to segment number: {}", referred_to_segment_number); } // 7.2.6 Segment page association u32 segment_page_association; if (segment_page_association_size_is_32_bits) { segment_page_association = TRY(stream.read_value>()); } else { segment_page_association = TRY(stream.read_value()); } dbgln_if(JBIG2_DEBUG, "Segment page association: {}", segment_page_association); // 7.2.7 Segment data length u32 data_length = TRY(stream.read_value>()); dbgln_if(JBIG2_DEBUG, "Segment data length: {}", data_length); // FIXME: Add some validity checks: // - check type is valid // - check referred_to_segment_numbers are smaller than segment_number // - 7.3.1 Rules for segment references // - 7.3.2 Rules for page associations Optional opt_data_length; if (data_length != 0xffff'ffff) opt_data_length = data_length; else if (type != ImmediateGenericRegion) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown data length only allowed for ImmediateGenericRegion"); return SegmentHeader { segment_number, type, move(referred_to_segment_numbers), segment_page_association, opt_data_length }; } static ErrorOr scan_for_immediate_generic_region_size(ReadonlyBytes data) { // 7.2.7 Segment data length // "If the segment's type is "Immediate generic region", then the length field may contain the value 0xFFFFFFFF. // This value is intended to mean that the length of the segment's data part is unknown at the time that the segment header is written (...). // In this case, the true length of the segment's data part shall be determined through examination of the data: // if the segment uses template-based arithmetic coding, then the segment's data part ends with the two-byte sequence 0xFF 0xAC followed by a four-byte row count. // If the segment uses MMR coding, then the segment's data part ends with the two-byte sequence 0x00 0x00 followed by a four-byte row count. // The form of encoding used by the segment may be determined by examining the eighteenth byte of its segment data part, // and the end sequences can occur anywhere after that eighteenth byte." // 7.4.6.4 Decoding a generic region segment // "NOTE – The sequence 0x00 0x00 cannot occur within MMR-encoded data; the sequence 0xFF 0xAC can occur only at the end of arithmetically-coded data. // Thus, those sequences cannot occur by chance in the data that is decoded to generate the contents of the generic region." dbgln_if(JBIG2_DEBUG, "(Unknown data length, computing it)"); if (data.size() < 19 + sizeof(u32)) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Data too short to contain segment data header and end sequence"); // Per 7.4.6.1 Generic region segment data header, this starts with the 17 bytes described in // 7.4.1 Region segment information field, followed the byte described in 7.4.6.2 Generic region segment flags. // That byte's lowest bit stores if the segment uses MMR. u8 flags = data[17]; bool uses_mmr = (flags & 1) != 0; auto end_sequence = uses_mmr ? to_array({ 0x00, 0x00 }) : to_array({ 0xFF, 0xAC }); u8 const* end = static_cast(memmem(data.data() + 19, data.size() - 19 - sizeof(u32), end_sequence.data(), end_sequence.size())); if (!end) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Could not find end sequence in segment data"); size_t size = end - data.data() + end_sequence.size() + sizeof(u32); dbgln_if(JBIG2_DEBUG, "(Computed size is {})", size); return size; } static ErrorOr decode_segment_headers(JBIG2LoadingContext& context, ReadonlyBytes data) { FixedMemoryStream stream(data); Vector segment_datas; auto store_and_skip_segment_data = [&](SegmentHeader const& segment_header) -> ErrorOr { size_t start_offset = TRY(stream.tell()); u32 data_length = TRY(segment_header.data_length.try_value_or_lazy_evaluated([&]() { return scan_for_immediate_generic_region_size(data.slice(start_offset)); })); if (start_offset + data_length > data.size()) { dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: start_offset={}, data_length={}, data.size()={}", start_offset, data_length, data.size()); return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment data length exceeds file size"); } ReadonlyBytes segment_data = data.slice(start_offset, data_length); segment_datas.append(segment_data); TRY(stream.seek(data_length, SeekMode::FromCurrentPosition)); return {}; }; Vector segment_headers; while (!stream.is_eof()) { auto segment_header = TRY(decode_segment_header(stream)); segment_headers.append(segment_header); if (context.organization != Organization::RandomAccess) TRY(store_and_skip_segment_data(segment_header)); // Required per spec for files with RandomAccess organization. if (segment_header.type == SegmentType::EndOfFile) break; } if (context.organization == Organization::RandomAccess) { for (auto const& segment_header : segment_headers) TRY(store_and_skip_segment_data(segment_header)); } if (segment_headers.size() != segment_datas.size()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment headers and segment datas have different sizes"); for (size_t i = 0; i < segment_headers.size(); ++i) { context.segments.append({ segment_headers[i], segment_datas[i], {} }); context.segments_by_number.set(segment_headers[i].segment_number, context.segments.size() - 1); } return {}; } // 7.4.1 Region segment information field struct [[gnu::packed]] RegionSegmentInformationField { BigEndian width; BigEndian height; BigEndian x_location; BigEndian y_location; u8 flags; CombinationOperator external_combination_operator() const { VERIFY((flags & 0x7) <= 4); return static_cast(flags & 0x7); } bool is_color_bitmap() const { return (flags & 0x8) != 0; } }; static_assert(AssertSize()); static ErrorOr decode_region_segment_information_field(ReadonlyBytes data) { // 7.4.8 Page information segment syntax if (data.size() < sizeof(RegionSegmentInformationField)) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field size"); auto result = *(RegionSegmentInformationField const*)data.data(); if ((result.flags & 0b1111'0000) != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field flags"); if ((result.flags & 0x7) > 4) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field operator"); // NOTE 3 – If the colour extension flag (COLEXTFLAG) is equal to 1, the external combination operator must be REPLACE. if (result.is_color_bitmap() && result.external_combination_operator() != CombinationOperator::Replace) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid colored region segment information field operator"); return result; } // 7.4.8 Page information segment syntax struct [[gnu::packed]] PageInformationSegment { BigEndian bitmap_width; BigEndian bitmap_height; BigEndian page_x_resolution; // In pixels/meter. BigEndian page_y_resolution; // In pixels/meter. u8 flags; BigEndian striping_information; }; static_assert(AssertSize()); static ErrorOr decode_page_information_segment(ReadonlyBytes data) { // 7.4.8 Page information segment syntax if (data.size() != sizeof(PageInformationSegment)) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid page information segment size"); return *(PageInformationSegment const*)data.data(); } static ErrorOr scan_for_page_size(JBIG2LoadingContext& context) { // We only decode the first page at the moment. bool found_size = false; for (auto const& segment : context.segments) { if (segment.header.type != SegmentType::PageInformation || segment.header.page_association != 1) continue; auto page_information = TRY(decode_page_information_segment(segment.data)); // FIXME: We're supposed to compute this from the striping information if it's not set. if (page_information.bitmap_height == 0xffff'ffff) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle unknown page height yet"); context.page.size = { page_information.bitmap_width, page_information.bitmap_height }; found_size = true; } if (!found_size) return Error::from_string_literal("JBIG2ImageDecoderPlugin: No page information segment found for page 1"); return {}; } static ErrorOr warn_about_multiple_pages(JBIG2LoadingContext& context) { HashTable seen_pages; Vector pages; for (auto const& segment : context.segments) { if (segment.header.page_association == 0) continue; if (seen_pages.contains(segment.header.page_association)) continue; seen_pages.set(segment.header.page_association); pages.append(segment.header.page_association); } // scan_for_page_size() already checked that there's a page 1. VERIFY(seen_pages.contains(1)); if (pages.size() == 1) return {}; StringBuilder builder; builder.appendff("JBIG2 file contains {} pages ({}", pages.size(), pages[0]); size_t i; for (i = 1; i < min(pages.size(), 10); ++i) builder.appendff(" {}", pages[i]); if (i != pages.size()) builder.append(" ..."sv); builder.append("). We will only render page 1."sv); dbgln("JBIG2ImageDecoderPlugin: {}", TRY(builder.to_string())); return {}; } struct AdaptiveTemplatePixel { i8 x { 0 }; i8 y { 0 }; }; // 6.2.2 Input parameters // Table 2 – Parameters for the generic region decoding procedure struct GenericRegionDecodingInputParameters { bool is_modified_modified_read { false }; // "MMR" in spec. u32 region_width { 0 }; // "GBW" in spec. u32 region_height { 0 }; // "GBH" in spec. u8 gb_template { 0 }; bool is_typical_prediction_used { false }; // "TPGDON" in spec. bool is_extended_reference_template_used { false }; // "EXTTEMPLATE" in spec. Optional> skip_pattern; // "USESKIP", "SKIP" in spec. Array adaptive_template_pixels; // "GBATX" / "GBATY" in spec. // FIXME: GBCOLS, GBCOMBOP, COLEXTFLAG // If is_modified_modified_read is false, generic_region_decoding_procedure() reads data off this decoder. JBIG2::ArithmeticDecoder* arithmetic_decoder { nullptr }; }; // 6.2 Generic region decoding procedure static ErrorOr> generic_region_decoding_procedure(GenericRegionDecodingInputParameters const& inputs, ReadonlyBytes data, Vector& contexts) { if (inputs.is_modified_modified_read) { dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: MMR image data"); // 6.2.6 Decoding using MMR coding auto buffer = TRY(CCITT::decode_ccitt_group4(data, inputs.region_width, inputs.region_height)); auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height)); size_t bytes_per_row = ceil_div(inputs.region_width, 8); if (buffer.size() != bytes_per_row * inputs.region_height) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoded MMR data has wrong size"); // FIXME: Could probably just copy the ByteBuffer directly into the BitBuffer's internal ByteBuffer instead. for (size_t y = 0; y < inputs.region_height; ++y) { for (size_t x = 0; x < inputs.region_width; ++x) { bool bit = buffer[y * bytes_per_row + x / 8] & (1 << (7 - x % 8)); result->set_bit(x, y, bit); } } return result; } // 6.2.5 Decoding using a template and arithmetic coding if (inputs.is_extended_reference_template_used) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode EXTTEMPLATE yet"); if (inputs.gb_template == 0) { if (inputs.adaptive_template_pixels[0].x != 3 || inputs.adaptive_template_pixels[0].y != -1 || inputs.adaptive_template_pixels[1].x != -3 || inputs.adaptive_template_pixels[1].y != -1 || inputs.adaptive_template_pixels[2].x != 2 || inputs.adaptive_template_pixels[2].y != -2 || inputs.adaptive_template_pixels[3].x != -2 || inputs.adaptive_template_pixels[3].y != -2) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet"); } else if (inputs.gb_template == 1) { if (inputs.adaptive_template_pixels[0].x != 3 || inputs.adaptive_template_pixels[0].y != -1) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet"); } else { VERIFY(inputs.gb_template == 2 || inputs.gb_template == 3); if (inputs.adaptive_template_pixels[0].x != 2 || inputs.adaptive_template_pixels[0].y != -1) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels yet"); } if (inputs.skip_pattern.has_value()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode USESKIP yet"); auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height)); static constexpr auto get_pixel = [](NonnullOwnPtr const& buffer, int x, int y) -> bool { if (x < 0 || x >= (int)buffer->width() || y < 0) return false; return buffer->get_bit(x, y); }; // Figure 3(a) – Template when GBTEMPLATE = 0 and EXTTEMPLATE = 0, constexpr auto compute_context_0 = [](NonnullOwnPtr const& buffer, int x, int y) -> u16 { u16 result = 0; for (int i = 0; i < 5; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 2); for (int i = 0; i < 7; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y - 1); for (int i = 0; i < 4; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y); return result; }; // Figure 4 – Template when GBTEMPLATE = 1 auto compute_context_1 = [](NonnullOwnPtr const& buffer, int x, int y) -> u16 { u16 result = 0; for (int i = 0; i < 4; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2); for (int i = 0; i < 6; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1); for (int i = 0; i < 3; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y); return result; }; // Figure 5 – Template when GBTEMPLATE = 2 auto compute_context_2 = [](NonnullOwnPtr const& buffer, int x, int y) -> u16 { u16 result = 0; for (int i = 0; i < 3; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2); for (int i = 0; i < 5; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1); for (int i = 0; i < 2; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y); return result; }; // Figure 6 – Template when GBTEMPLATE = 3 auto compute_context_3 = [](NonnullOwnPtr const& buffer, int x, int y) -> u16 { u16 result = 0; for (int i = 0; i < 6; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y - 1); for (int i = 0; i < 4; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y); return result; }; u16 (*compute_context)(NonnullOwnPtr const&, int, int); if (inputs.gb_template == 0) compute_context = compute_context_0; else if (inputs.gb_template == 1) compute_context = compute_context_1; else if (inputs.gb_template == 2) compute_context = compute_context_2; else { VERIFY(inputs.gb_template == 3); compute_context = compute_context_3; } // "The values of the pixels in this neighbourhood define a context. Each context has its own adaptive probability estimate // used by the arithmetic coder (see Annex E)." // "* Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set to the value formed by // concatenating the label "GB" and the 10-16 pixel values gathered in CONTEXT." // Implementor's note: What this is supposed to mean is that we have a bunch of independent contexts, and we pick the // context for the current pixel based on pixel values in the neighborhood. The "GB" part just means this context is // independent from other contexts in the spec. They are passed in to this function. // Figure 8 – Reused context for coding the SLTP value when GBTEMPLATE is 0 constexpr u16 sltp_context_for_template_0 = 0b10011'0110010'0101; // Figure 9 – Reused context for coding the SLTP value when GBTEMPLATE is 1 constexpr u16 sltp_context_for_template_1 = 0b0011'110010'101; // Figure 10 – Reused context for coding the SLTP value when GBTEMPLATE is 2 constexpr u16 sltp_context_for_template_2 = 0b001'11001'01; // Figure 11 – Reused context for coding the SLTP value when GBTEMPLATE is 3 constexpr u16 sltp_context_for_template_3 = 0b011001'0101; u16 sltp_context = [](u8 gb_template) { if (gb_template == 0) return sltp_context_for_template_0; if (gb_template == 1) return sltp_context_for_template_1; if (gb_template == 2) return sltp_context_for_template_2; VERIFY(gb_template == 3); return sltp_context_for_template_3; }(inputs.gb_template); // 6.2.5.7 Decoding the bitmap JBIG2::ArithmeticDecoder& decoder = *inputs.arithmetic_decoder; bool ltp = false; // "LTP" in spec. "Line (uses) Typical Prediction" maybe? for (size_t y = 0; y < inputs.region_height; ++y) { if (inputs.is_typical_prediction_used) { // "SLTP" in spec. "Swap LTP" or "Switch LTP" maybe? bool sltp = decoder.get_next_bit(contexts[sltp_context]); ltp = ltp ^ sltp; if (ltp) { for (size_t x = 0; x < inputs.region_width; ++x) result->set_bit(x, y, get_pixel(result, (int)x, (int)y - 1)); continue; } } for (size_t x = 0; x < inputs.region_width; ++x) { u16 context = compute_context(result, x, y); bool bit = decoder.get_next_bit(contexts[context]); result->set_bit(x, y, bit); } } return result; } // 6.3.2 Input parameters // Table 6 – Parameters for the generic refinement region decoding procedure struct GenericRefinementRegionDecodingInputParameters { u32 region_width { 0 }; // "GRW" in spec. u32 region_height { 0 }; // "GRH" in spec. u8 gr_template { 0 }; // "GRTEMPLATE" in spec. BitBuffer const* reference_bitmap { nullptr }; // "GRREFERENCE" in spec. i32 reference_x_offset { 0 }; // "GRREFERENCEDX" in spec. i32 reference_y_offset { 0 }; // "GRREFERENCEDY" in spec. bool is_typical_prediction_used { false }; // "TPGDON" in spec. Array adaptive_template_pixels; // "GRATX" / "GRATY" in spec. }; // 6.3 Generic Refinement Region Decoding Procedure static ErrorOr> generic_refinement_region_decoding_procedure(GenericRefinementRegionDecodingInputParameters& inputs, JBIG2::ArithmeticDecoder& decoder, Vector& contexts) { VERIFY(inputs.gr_template == 0 || inputs.gr_template == 1); if (inputs.is_typical_prediction_used) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode typical prediction in generic refinement regions yet"); if (inputs.gr_template == 0) { if (inputs.adaptive_template_pixels[0].x != -1 || inputs.adaptive_template_pixels[0].y != -1 || inputs.adaptive_template_pixels[1].x != -1 || inputs.adaptive_template_pixels[1].y != -1) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle custom adaptive pixels in refinement regions yet"); } // GRTEMPLATE 1 never uses adaptive pixels. // 6.3.5.3 Fixed templates and adaptive templates static constexpr auto get_pixel = [](BitBuffer const& buffer, int x, int y) -> bool { if (x < 0 || x >= (int)buffer.width() || y < 0 || y >= (int)buffer.height()) return false; return buffer.get_bit(x, y); }; // Figure 12 – 13-pixel refinement template showing the AT pixels at their nominal locations constexpr auto compute_context_0 = [](BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 { u16 result = 0; for (int dy = -1; dy <= 1; ++dy) for (int dx = -1; dx <= 1; ++dx) result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy); for (int i = 0; i < 3; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 1); result = (result << 1) | (u16)get_pixel(buffer, x - 1, y); return result; }; // Figure 13 – 10-pixel refinement template constexpr auto compute_context_1 = [](BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 { u16 result = 0; for (int dy = -1; dy <= 1; ++dy) { for (int dx = -1; dx <= 1; ++dx) { if ((dy == -1 && (dx == -1 || dx == 1)) || (dy == 1 && dx == -1)) continue; result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy); } } for (int i = 0; i < 3; ++i) result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 1); result = (result << 1) | (u16)get_pixel(buffer, x - 1, y); return result; }; auto compute_context = inputs.gr_template == 0 ? compute_context_0 : compute_context_1; // 6.3.5.6 Decoding the refinement bitmap auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height)); for (size_t y = 0; y < result->height(); ++y) { for (size_t x = 0; x < result->width(); ++x) { u16 context = compute_context(*inputs.reference_bitmap, x - inputs.reference_x_offset, y - inputs.reference_y_offset, *result, x, y); bool bit = decoder.get_next_bit(contexts[context]); result->set_bit(x, y, bit); } } return result; } // 6.4.2 Input parameters // Table 9 – Parameters for the text region decoding procedure struct TextRegionDecodingInputParameters { bool uses_huffman_encoding { false }; // "SBHUFF" in spec. bool uses_refinement_coding { false }; // "SBREFINE" in spec. u32 region_width { 0 }; // "SBW" in spec. u32 region_height { 0 }; // "SBH" in spec. u32 number_of_instances { 0 }; // "SBNUMINSTANCES" in spec. u32 size_of_symbol_instance_strips { 0 }; // "SBSTRIPS" in spec. // "SBNUMSYMS" is `symbols.size()` below. // FIXME: SBSYMCODES u32 id_symbol_code_length { 0 }; // "SBSYMCODELEN" in spec. Vector> symbols; // "SBNUMSYMS" / "SBSYMS" in spec. u8 default_pixel { 0 }; // "SBDEFPIXEL" in spec. CombinationOperator operator_ { CombinationOperator::Or }; // "SBCOMBOP" in spec. bool is_transposed { false }; // "TRANSPOSED" in spec. enum class Corner { BottomLeft = 0, TopLeft = 1, BottomRight = 2, TopRight = 3, }; Corner reference_corner { Corner::TopLeft }; // "REFCORNER" in spec. i8 delta_s_offset { 0 }; // "SBDSOFFSET" in spec. // FIXME: SBHUFFFS, SBHUFFFDS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SBHUFFRDX, SBHUFFRDY, SBHUFFRSIZE u8 refinement_template { 0 }; // "SBRTEMPLATE" in spec. Array refinement_adaptive_template_pixels; // "SBRATX" / "SBRATY" in spec. // FIXME: COLEXTFLAG, SBCOLS }; // 6.4 Text Region Decoding Procedure static ErrorOr> text_region_decoding_procedure(TextRegionDecodingInputParameters const& inputs, ReadonlyBytes data) { if (inputs.uses_huffman_encoding) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet"); if (inputs.is_transposed) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode transposed text regions yet"); auto decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data)); // 6.4.6 Strip delta T // "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDT and multiply the resulting value by SBSTRIPS. // If SBHUFF is 0, decode a value using the IADT integer arithmetic decoding procedure (see Annex A) and multiply the resulting value by SBSTRIPS." // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder delta_t_integer_decoder(decoder); auto read_delta_t = [&]() -> i32 { return delta_t_integer_decoder.decode().value() * inputs.size_of_symbol_instance_strips; }; // 6.4.7 First symbol instance S coordinate // "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFFS. // If SBHUFF is 0, decode a value using the IAFS integer arithmetic decoding procedure (see Annex A)." // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder first_s_integer_decoder(decoder); auto read_first_s = [&]() -> i32 { return first_s_integer_decoder.decode().value(); }; // 6.4.8 Subsequent symbol instance S coordinate // "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDS. // If SBHUFF is 0, decode a value using the IADS integer arithmetic decoding procedure (see Annex A). // In either case it is possible that the result of this decoding is the out-of-band value OOB."" // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder subsequent_s_integer_decoder(decoder); auto read_subsequent_s = [&]() -> Optional { return subsequent_s_integer_decoder.decode(); }; // 6.4.9 Symbol instance T coordinate // "If SBSTRIPS == 1, then the value decoded is always zero. Otherwise: // • If SBHUFF is 1, decode a value by reading ceil(log2(SBSTRIPS)) bits directly from the bitstream. // • If SBHUFF is 0, decode a value using the IAIT integer arithmetic decoding procedure (see Annex A)." // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder instance_t_integer_decoder(decoder); auto read_instance_t = [&]() -> i32 { if (inputs.size_of_symbol_instance_strips == 1) return 0; return instance_t_integer_decoder.decode().value(); }; // 6.4.10 Symbol instance symbol ID // "If SBHUFF is 1, decode a value by reading one bit at a time until the resulting bit string is equal to one of the entries in // SBSYMCODES. The resulting value, which is IDI, is the index of the entry in SBSYMCODES that is read. // If SBHUFF is 0, decode a value using the IAID integer arithmetic decoding procedure (see Annex A). Set IDI to the // resulting value."" // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerIDDecoder id_decoder(decoder, inputs.id_symbol_code_length); // 6.4.11.1 Symbol instance refinement delta width // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder refinement_delta_width_decoder(decoder); auto read_refinement_delta_width = [&]() -> i32 { return refinement_delta_width_decoder.decode().value(); }; // 6.4.11.2 Symbol instance refinement delta width // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder refinement_delta_height_decoder(decoder); auto read_refinement_delta_height = [&]() -> i32 { return refinement_delta_height_decoder.decode().value(); }; // 6.4.11.3 Symbol instance refinement X offset // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder refinement_x_offset_decoder(decoder); auto read_refinement_x_offset = [&]() -> i32 { return refinement_x_offset_decoder.decode().value(); }; // 6.4.11.4 Symbol instance refinement Y offset // FIXME: Implement support for SBHUFF = 1. JBIG2::ArithmeticIntegerDecoder refinement_y_offset_decoder(decoder); auto read_refinement_y_offset = [&]() -> i32 { return refinement_y_offset_decoder.decode().value(); }; // 6.4.11 Symbol instance bitmap JBIG2::ArithmeticIntegerDecoder has_refinement_image_decoder(decoder); Vector refinement_contexts; if (inputs.uses_refinement_coding) refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10)); OwnPtr refinement_result; auto read_bitmap = [&](u32 id) -> ErrorOr { if (id >= inputs.symbols.size()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol ID out of range"); auto const& symbol = inputs.symbols[id]->bitmap(); bool has_refinement_image = false; // "R_I" in spec. if (inputs.uses_refinement_coding) { // "• If SBHUFF is 1, then read one bit and set RI to the value of that bit. // • If SBHUFF is 0, then decode one bit using the IARI integer arithmetic decoding procedure and set RI to the value of that bit." // FIXME: Implement support for SBHUFF = 1. has_refinement_image = has_refinement_image_decoder.decode().value(); } if (!has_refinement_image) return &symbol; auto refinement_delta_width = read_refinement_delta_width(); auto refinement_delta_height = read_refinement_delta_height(); auto refinement_x_offset = read_refinement_x_offset(); auto refinement_y_offset = read_refinement_y_offset(); // FIXME: This is missing some steps needed for the SBHUFF = 1 case. dbgln_if(JBIG2_DEBUG, "refinement delta width: {}, refinement delta height: {}, refinement x offset: {}, refinement y offset: {}", refinement_delta_width, refinement_delta_height, refinement_x_offset, refinement_y_offset); // Table 12 – Parameters used to decode a symbol instance's bitmap using refinement GenericRefinementRegionDecodingInputParameters refinement_inputs; refinement_inputs.region_width = symbol.width() + refinement_delta_width; refinement_inputs.region_height = symbol.height() + refinement_delta_height; refinement_inputs.gr_template = inputs.refinement_template; refinement_inputs.reference_bitmap = &symbol; refinement_inputs.reference_x_offset = refinement_delta_width / 2 + refinement_x_offset; refinement_inputs.reference_y_offset = refinement_delta_height / 2 + refinement_y_offset; refinement_inputs.is_typical_prediction_used = false; refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels; refinement_result = TRY(generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts)); return refinement_result.ptr(); }; // 6.4.5 Decoding the text region // "1) Fill a bitmap SBREG, of the size given by SBW and SBH, with the SBDEFPIXEL value." auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height)); if (inputs.default_pixel != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle SBDEFPIXEL not equal to 0 yet"); result->fill(inputs.default_pixel != 0); // "2) Decode the initial STRIPT value as described in 6.4.6. Negate the decoded value and assign this negated value to the variable STRIPT. // Assign the value 0 to FIRSTS. Assign the value 0 to NINSTANCES." i32 strip_t = -read_delta_t(); i32 first_s = 0; u32 n_instances = 0; // "3) If COLEXTFLAG is 1, decode the colour section as described in 6.4.12." // FIXME: Implement support for colors one day. // "4) Decode each strip as follows: // a) If NINSTANCES is equal to SBNUMINSTANCES then there are no more strips to decode, // and the process of decoding the text region is complete; proceed to step 4)." // Implementor's note. The spec means "proceed to step 5)" at the end of 4a). while (n_instances < inputs.number_of_instances) { // "b) Decode the strip's delta T value as described in 6.4.6. Let DT be the decoded value. Set: // STRIPT = STRIPT + DT" i32 delta_t = read_delta_t(); strip_t += delta_t; i32 cur_s; bool is_first_symbol = true; while (true) { // "c) Decode each symbol instance in the strip as follows: // i) If the current symbol instance is the first symbol instance in the strip, then decode the first // symbol instance's S coordinate as described in 6.4.7. Let DFS be the decoded value. Set: // FIRSTS = FIRSTS + DFS // CURS = FIRSTS // ii) Otherwise, if the current symbol instance is not the first symbol instance in the strip, decode // the symbol instance's S coordinate as described in 6.4.8. If the result of this decoding is OOB // then the last symbol instance of the strip has been decoded; proceed to step 3 d). Otherwise, let // IDS be the decoded value. Set: // CURS = CURS + IDS + SBDSOFFSET" // Implementor's note: The spec means "proceed to step 4 d)" in 4c ii). if (is_first_symbol) { i32 delta_first_s = read_first_s(); first_s += delta_first_s; cur_s = first_s; is_first_symbol = false; } else { auto subsequent_s = read_subsequent_s(); if (!subsequent_s.has_value()) break; i32 instance_delta_s = subsequent_s.value(); cur_s += instance_delta_s + inputs.delta_s_offset; } // "iii) Decode the symbol instance's T coordinate as described in 6.4.9. Let CURT be the decoded value. Set: // TI = STRIPT + CURT" i32 cur_t = read_instance_t(); i32 t_instance = strip_t + cur_t; // "iv) Decode the symbol instance's symbol ID as described in 6.4.10. Let IDI be the decoded value." u32 id = id_decoder.decode(); // "v) Determine the symbol instance's bitmap IBI as described in 6.4.11. The width and height of this // bitmap shall be denoted as WI and HI respectively." auto const& symbol = *TRY(read_bitmap(id)); // "vi) Update CURS as follows: // • If TRANSPOSED is 0, and REFCORNER is TOPRIGHT or BOTTOMRIGHT, set: // CURS = CURS + WI – 1 // • If TRANSPOSED is 1, and REFCORNER is BOTTOMLEFT or BOTTOMRIGHT, set: // CURS = CURS + HI –1 // • Otherwise, do not change CURS in this step." using enum TextRegionDecodingInputParameters::Corner; if (!inputs.is_transposed && (inputs.reference_corner == TopRight || inputs.reference_corner == BottomRight)) cur_s += symbol.width() - 1; if (inputs.is_transposed && (inputs.reference_corner == BottomLeft || inputs.reference_corner == BottomRight)) cur_s += symbol.height() - 1; // "vii) Set: // SI = CURS" auto s_instance = cur_s; // "viii) Determine the location of the symbol instance bitmap with respect to SBREG as follows: // • If TRANSPOSED is 0, then: // – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap // IBI shall be placed at SBREG[SI, TI]. // – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance // bitmap IBI shall be placed at SBREG[SI, TI]. // – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol // instance bitmap IBI shall be placed at SBREG[SI, TI]. // – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol // instance bitmap IBI shall be placed at SBREG[SI, TI]. // • If TRANSPOSED is 1, then: // – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap // IBI shall be placed at SBREG[TI, SI]. // – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance // bitmap IBI shall be placed at SBREG[TI, SI]. // – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol // instance bitmap IBI shall be placed at SBREG[TI, SI]. // – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol // instance bitmap IBI shall be placed at SBREG[TI, SI]. // If any part of IBI, when placed at this location, lies outside the bounds of SBREG, then ignore // this part of IBI in step 3 c) ix)." // Implementor's note: The spec means "ignore this part of IBI in step 3 c) x)" in 3c viii)'s last sentence. // FIXME: Support all reference corners and transpose values. if (!inputs.is_transposed) { switch (inputs.reference_corner) { case TopLeft: break; case TopRight: s_instance -= symbol.width() - 1; break; case BottomLeft: t_instance -= symbol.height() - 1; break; case BottomRight: s_instance -= symbol.width() - 1; t_instance -= symbol.height() - 1; break; } } else { TODO(); } // "ix) If COLEXTFLAG is 1, set the colour specified by SBCOLS[SBFGCOLID[NINSTANCES]] // to the foreground colour of the symbol instance bitmap IBI." // FIXME: Implement support for colors one day. // "x) Draw IBI into SBREG. Combine each pixel of IBI with the current value of the corresponding // pixel in SBREG, using the combination operator specified by SBCOMBOP. Write the results // of each combination into that pixel in SBREG." composite_bitbuffer(*result, symbol, { s_instance, t_instance }, inputs.operator_); // "xi) Update CURS as follows: // • If TRANSPOSED is 0, and REFCORNER is TOPLEFT or BOTTOMLEFT, set: // CURS = CURS + WI –1 // • If TRANSPOSED is 1, and REFCORNER is TOPLEFT or TOPRIGHT, set: // CURS = CURS + HI –1 // • Otherwise, do not change CURS in this step." if (!inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == BottomLeft)) cur_s += symbol.width() - 1; if (inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == TopRight)) cur_s += symbol.height() - 1; // "xii) Set: // NINSTANCES = NINSTANCES + 1" ++n_instances; } // "d) When the strip has been completely decoded, decode the next strip." // (Done in the next loop iteration.) } // "5) After all the strips have been decoded, the current contents of SBREG are the results that shall be // obtained by every decoder, whether it performs this exact sequence of steps or not." return result; } // 6.5.2 Input parameters // Table 13 – Parameters for the symbol dictionary decoding procedure struct SymbolDictionaryDecodingInputParameters { bool uses_huffman_encoding { false }; // "SDHUFF" in spec. bool uses_refinement_or_aggregate_coding { false }; // "SDREFAGG" in spec. Vector> input_symbols; // "SDNUMINSYMS", "SDINSYMS" in spec. u32 number_of_new_symbols { 0 }; // "SDNUMNEWSYMS" in spec. u32 number_of_exported_symbols { 0 }; // "SDNUMEXSYMS" in spec. // FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST u8 symbol_template { 0 }; // "SDTEMPLATE" in spec. Array adaptive_template_pixels; // "SDATX" / "SDATY" in spec. u8 refinement_template { 0 }; // "SDRTEMPLATE" in spec; Array refinement_adaptive_template_pixels; // "SDRATX" / "SDRATY" in spec. }; // 6.5 Symbol Dictionary Decoding Procedure static ErrorOr>> symbol_dictionary_decoding_procedure(SymbolDictionaryDecodingInputParameters const& inputs, ReadonlyBytes data) { if (inputs.uses_huffman_encoding) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman symbol dictionaries yet"); auto decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data)); Vector contexts; contexts.resize(1 << number_of_context_bits_for_template(inputs.symbol_template)); // 6.5.6 Height class delta height // "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDH. // If SDHUFF is 0, decode a value using the IADH integer arithmetic decoding procedure (see Annex A)." // FIXME: Implement support for SDHUFF = 1. JBIG2::ArithmeticIntegerDecoder delta_height_integer_decoder(decoder); auto read_delta_height = [&]() -> i32 { // No OOB values for delta height. return delta_height_integer_decoder.decode().value(); }; // 6.5.7 Delta width // "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDW. // If SDHUFF is 0, decode a value using the IADW integer arithmetic decoding procedure (see Annex A). // In either case it is possible that the result of this decoding is the out-of-band value OOB." // FIXME: Implement support for SDHUFF = 1. JBIG2::ArithmeticIntegerDecoder delta_width_integer_decoder(decoder); auto read_delta_width = [&]() -> Optional { return delta_width_integer_decoder.decode(); }; // 6.5.8 Symbol bitmap // "This field is only present if SDHUFF = 0 or SDREFAGG = 1. This field takes one of two forms; SDREFAGG // determines which form is used." // 6.5.8.2.1 Number of symbol instances in aggregation // If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFAGGINST. // If SDHUFF is 0, decode a value using the IAAI integer arithmetic decoding procedure (see Annex A). // FIXME: Implement support for SDHUFF = 1. Optional number_of_symbol_instances_decoder; auto read_number_of_symbol_instances = [&]() -> i32 { if (!number_of_symbol_instances_decoder.has_value()) number_of_symbol_instances_decoder = JBIG2::ArithmeticIntegerDecoder(decoder); return number_of_symbol_instances_decoder->decode().value(); }; // 6.5.8.1 Direct-coded symbol bitmap Optional id_decoder; Optional refinement_x_offset_decoder; Optional refinement_y_offset_decoder; // FIXME: When we implement REFAGGNINST > 1 support, do these need to be shared with // text_region_decoding_procedure() then? Vector refinement_contexts; // This belongs in 6.5.5 1) below, but also needs to be captured by read_bitmap here. Vector> new_symbols; auto read_symbol_bitmap = [&](u32 width, u32 height) -> ErrorOr> { // "If SDREFAGG is 0, then decode the symbol's bitmap using a generic region decoding procedure as described in 6.2. // Set the parameters to this decoding procedure as shown in Table 16." if (!inputs.uses_refinement_or_aggregate_coding) { // Table 16 – Parameters used to decode a symbol's bitmap using generic bitmap decoding GenericRegionDecodingInputParameters generic_inputs; generic_inputs.is_modified_modified_read = false; generic_inputs.region_width = width; generic_inputs.region_height = height; generic_inputs.gb_template = inputs.symbol_template; generic_inputs.is_extended_reference_template_used = false; // Missing from spec in table 16. for (int i = 0; i < 4; ++i) generic_inputs.adaptive_template_pixels[i] = inputs.adaptive_template_pixels[i]; generic_inputs.arithmetic_decoder = &decoder; return generic_region_decoding_procedure(generic_inputs, {}, contexts); } // 6.5.8.2 Refinement/aggregate-coded symbol bitmap // "1) Decode the number of symbol instances contained in the aggregation, as specified in 6.5.8.2.1. Let REFAGGNINST be the value decoded." auto number_of_symbol_instances = read_number_of_symbol_instances(); // "REFAGGNINST" in spec. dbgln_if(JBIG2_DEBUG, "Number of symbol instances: {}", number_of_symbol_instances); if (number_of_symbol_instances > 1) { // "2) If REFAGGNINST is greater than one, then decode the bitmap itself using a text region decoding procedure // as described in 6.4. Set the parameters to this decoding procedure as shown in Table 17." return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode symbol bitmaps with more than one symbol instance yet"); } // "3) If REFAGGNINST is equal to one, then decode the bitmap as described in 6.5.8.2.2." // 6.5.8.2.3 Setting SBSYMCODES and SBSYMCODELEN // FIXME: Implement support for SDHUFF = 1 u32 code_length = ceil(log2(inputs.input_symbols.size() + inputs.number_of_new_symbols)); // 6.5.8.2.2 Decoding a bitmap when REFAGGNINST = 1 // FIXME: This is missing some setps for the SDHUFF = 1 case. if (number_of_symbol_instances != 1) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of symbol instances"); if (!id_decoder.has_value()) id_decoder = JBIG2::ArithmeticIntegerIDDecoder(decoder, code_length); u32 symbol_id = id_decoder->decode(); if (!refinement_x_offset_decoder.has_value()) refinement_x_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder); i32 refinement_x_offset = refinement_x_offset_decoder->decode().value(); if (!refinement_y_offset_decoder.has_value()) refinement_y_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder); i32 refinement_y_offset = refinement_y_offset_decoder->decode().value(); if (symbol_id >= inputs.input_symbols.size() && symbol_id - inputs.input_symbols.size() >= new_symbols.size()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Refinement/aggregate symbol ID out of range"); auto IBO = (symbol_id < inputs.input_symbols.size()) ? inputs.input_symbols[symbol_id] : new_symbols[symbol_id - inputs.input_symbols.size()]; // Table 18 – Parameters used to decode a symbol's bitmap when REFAGGNINST = 1 GenericRefinementRegionDecodingInputParameters refinement_inputs; refinement_inputs.region_width = width; refinement_inputs.region_height = height; refinement_inputs.gr_template = inputs.refinement_template; refinement_inputs.reference_bitmap = &IBO->bitmap(); refinement_inputs.reference_x_offset = refinement_x_offset; refinement_inputs.reference_y_offset = refinement_y_offset; refinement_inputs.is_typical_prediction_used = false; refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels; if (refinement_contexts.is_empty()) refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10)); return generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts); }; // 6.5.5 Decoding the symbol dictionary // "1) Create an array SDNEWSYMS of bitmaps, having SDNUMNEWSYMS entries." // Done above read_bitmap(). // "2) If SDHUFF is 1 and SDREFAGG is 0, create an array SDNEWSYMWIDTHS of integers, having SDNUMNEWSYMS entries." // FIXME: Implement support for SDHUFF = 1. // "3) Set: // HCHEIGHT = 0 // NSYMSDECODED = 0" u32 height_class_height = 0; u32 number_of_symbols_decoded = 0; // "4) Decode each height class as follows: // a) If NSYMSDECODED == SDNUMNEWSYMS then all the symbols in the dictionary have been decoded; proceed to step 5)." while (number_of_symbols_decoded < inputs.number_of_new_symbols) { // "b) Decode the height class delta height as described in 6.5.6. Let HCDH be the decoded value. Set: // HCHEIGHT = HCEIGHT + HCDH // SYMWIDTH = 0 // TOTWIDTH = 0 // HCFIRSTSYM = NSYMSDECODED" i32 delta_height = read_delta_height(); height_class_height += delta_height; u32 symbol_width = 0; u32 total_width = 0; u32 height_class_first_symbol = number_of_symbols_decoded; // "c) Decode each symbol within the height class as follows:" while (true) { // "i) Decode the delta width for the symbol as described in 6.5.7." auto opt_delta_width = read_delta_width(); // " If the result of this decoding is OOB then all the symbols in this height class have been decoded; proceed to step 4 d)." if (!opt_delta_width.has_value()) break; VERIFY(number_of_symbols_decoded < inputs.number_of_new_symbols); // " Otherwise let DW be the decoded value and set:" // SYMWIDTH = SYMWIDTH + DW // TOTWIDTH = TOTWIDTH + SYMWIDTH" i32 delta_width = opt_delta_width.value(); symbol_width += delta_width; total_width += symbol_width; // "ii) If SDHUFF is 0 or SDREFAGG is 1, then decode the symbol's bitmap as described in 6.5.8. // Let BS be the decoded bitmap (this bitmap has width SYMWIDTH and height HCHEIGHT). Set: // SDNEWSYMS[NSYMSDECODED] = BS" // FIXME: Implement support for SDHUFF = 1. // FIXME: Doing this eagerly is pretty wasteful. Decode on demand instead? auto bitmap = TRY(read_symbol_bitmap(symbol_width, height_class_height)); new_symbols.append(Symbol::create(move(bitmap))); // "iii) If SDHUFF is 1 and SDREFAGG is 0, then set: // SDNEWSYMWIDTHS[NSYMSDECODED] = SYMWIDTH" // FIXME: Implement support for SDHUFF = 1. (void)total_width; (void)height_class_first_symbol; // "iv) Set: // NSYMSDECODED = NSYMSDECODED + 1" number_of_symbols_decoded++; } // d) If SDHUFF is 1 and SDREFAGG is 0, [...long text elided...] // FIXME: Implement support for SDHUFF = 1. } // 5) Determine which symbol bitmaps are exported from this symbol dictionary, as described in 6.5.10. These // bitmaps can be drawn from the symbols that are used as input to the symbol dictionary decoding // procedure as well as the new symbols produced by the decoding procedure." JBIG2::ArithmeticIntegerDecoder export_integer_decoder(decoder); // 6.5.10 Exported symbols Vector export_flags; export_flags.resize(inputs.input_symbols.size() + inputs.number_of_new_symbols); // "1) Set: // EXINDEX = 0 // CUREXFLAG = 0" u32 exported_index = 0; bool current_export_flag = false; do { // "2) Decode a value using Table B.1 if SDHUFF is 1, or the IAEX integer arithmetic decoding procedure if // SDHUFF is 0. Let EXRUNLENGTH be the decoded value." // FIXME: Implement support for SDHUFF = 1. i32 export_run_length = export_integer_decoder.decode().value(); // No OOB value. // "3) Set EXFLAGS[EXINDEX] through EXFLAGS[EXINDEX + EXRUNLENGTH – 1] to CUREXFLAG. // If EXRUNLENGTH = 0, then this step does not change any values." for (int i = 0; i < export_run_length; ++i) export_flags[exported_index + i] = current_export_flag; // "4) Set: // EXINDEX = EXINDEX + EXRUNLENGTH // CUREXFLAG = NOT(CUREXFLAG)" exported_index += export_run_length; current_export_flag = !current_export_flag; // 5) Repeat steps 2) through 4) until EXINDEX == SDNUMINSYMS + SDNUMNEWSYMS. } while (exported_index < inputs.input_symbols.size() + inputs.number_of_new_symbols); // "6) The array EXFLAGS now contains 1 for each symbol that is exported from the dictionary, and 0 for each // symbol that is not exported." Vector> exported_symbols; // "7) Set: // I = 0 // J = 0 // 8) For each value of I from 0 to SDNUMINSYMS + SDNUMNEWSYMS – 1," for (size_t i = 0; i < inputs.input_symbols.size() + inputs.number_of_new_symbols; ++i) { // "if EXFLAGS[I] == 1 then perform the following steps:" if (!export_flags[i]) continue; // "a) If I < SDNUMINSYMS then set: // SDEXSYMS[J] = SDINSYMS[I] // J = J + 1" if (i < inputs.input_symbols.size()) exported_symbols.append(inputs.input_symbols[i]); // "b) If I >= SDNUMINSYMS then set: // SDEXSYMS[J] = SDNEWSYMS[I – SDNUMINSYMS] // J = J + 1" if (i >= inputs.input_symbols.size()) exported_symbols.append(move(new_symbols[i - inputs.input_symbols.size()])); } if (exported_symbols.size() != inputs.number_of_exported_symbols) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of exported symbols"); return exported_symbols; } static ErrorOr decode_symbol_dictionary(JBIG2LoadingContext& context, SegmentData& segment) { // 7.4.2 Symbol dictionary segment syntax // 7.4.2.1 Symbol dictionary segment data header FixedMemoryStream stream(segment.data); // 7.4.2.1.1 Symbol dictionary flags u16 flags = TRY(stream.read_value>()); bool uses_huffman_encoding = (flags & 1) != 0; // "SDHUFF" in spec. bool uses_refinement_or_aggregate_coding = (flags & 2) != 0; // "SDREFAGG" in spec. u8 huffman_table_selection_for_height_differences = (flags >> 2) & 0b11; // "SDHUFFDH" in spec. if (huffman_table_selection_for_height_differences == 2) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences"); if (!uses_huffman_encoding && huffman_table_selection_for_height_differences != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences"); u8 huffman_table_selection_for_width_differences = (flags >> 4) & 0b11; // "SDHUFFDW" in spec. if (huffman_table_selection_for_width_differences == 2) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences"); if (!uses_huffman_encoding && huffman_table_selection_for_width_differences != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences"); bool uses_user_supplied_size_table = (flags >> 6) & 1; // "SDHUFFBMSIZE" in spec. if (!uses_huffman_encoding && uses_user_supplied_size_table) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_size_table"); bool uses_user_supplied_aggregate_table = (flags >> 7) & 1; // "SDHUFFAGGINST" in spec. if (!uses_huffman_encoding && uses_user_supplied_aggregate_table) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_aggregate_table"); bool bitmap_coding_context_used = (flags >> 8) & 1; if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_used) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_used"); bool bitmap_coding_context_retained = (flags >> 9) & 1; if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_retained) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_retained"); u8 template_used = (flags >> 10) & 0b11; // "SDTEMPLATE" in spec. if (uses_huffman_encoding && template_used != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid template_used"); u8 refinement_template_used = (flags >> 12) & 0b11; // "SDREFTEMPLATE" in spec. if (!uses_refinement_or_aggregate_coding && refinement_template_used != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template_used"); if (flags & 0b1110'0000'0000'0000) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid symbol dictionary flags"); // 7.4.2.1.2 Symbol dictionary AT flags Array adaptive_template {}; if (!uses_huffman_encoding) { int number_of_adaptive_template_pixels = template_used == 0 ? 4 : 1; for (int i = 0; i < number_of_adaptive_template_pixels; ++i) { adaptive_template[i].x = TRY(stream.read_value()); adaptive_template[i].y = TRY(stream.read_value()); } } // 7.4.2.1.3 Symbol dictionary refinement AT flags Array adaptive_refinement_template {}; if (uses_refinement_or_aggregate_coding && refinement_template_used == 0) { for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) { adaptive_refinement_template[i].x = TRY(stream.read_value()); adaptive_refinement_template[i].y = TRY(stream.read_value()); } } // 7.4.2.1.4 Number of exported symbols (SDNUMEXSYMS) u32 number_of_exported_symbols = TRY(stream.read_value>()); // 7.4.2.1.5 Number of new symbols (SDNUMNEWSYMS) u32 number_of_new_symbols = TRY(stream.read_value>()); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_huffman_encoding={}", uses_huffman_encoding); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_refinement_or_aggregate_coding={}", uses_refinement_or_aggregate_coding); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_height_differences={}", huffman_table_selection_for_height_differences); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_width_differences={}", huffman_table_selection_for_width_differences); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_size_table={}", uses_user_supplied_size_table); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_aggregate_table={}", uses_user_supplied_aggregate_table); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_used={}", bitmap_coding_context_used); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_retained={}", bitmap_coding_context_retained); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: template_used={}", template_used); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: refinement_template_used={}", refinement_template_used); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_exported_symbols={}", number_of_exported_symbols); dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_new_symbols={}", number_of_new_symbols); // 7.4.2.1.6 Symbol dictionary segment Huffman table selection // FIXME // 7.4.2.2 Decoding a symbol dictionary segment // "1) Interpret its header, as described in 7.4.2.1." // Done! // "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments." Vector> symbols; for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) { auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number); if (!opt_referred_to_segment.has_value()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment refers to non-existent segment"); dbgln_if(JBIG2_DEBUG, "Symbol segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value()); auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()]; if (!referred_to_segment.symbols.has_value()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment referred-to segment without symbols"); symbols.extend(referred_to_segment.symbols.value()); } // "3) If the "bitmap coding context used" bit in the header was 1, ..." if (bitmap_coding_context_used) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode bitmap coding context segment yet"); // "4) If the "bitmap coding context used" bit in the header was 0, then, as described in E.3.7, // reset all the arithmetic coding statistics for the generic region and generic refinement region decoding procedures to zero." // Nothing to do. // "5) Reset the arithmetic coding statistics for all the contexts of all the arithmetic integer coders to zero." // FIXME // "6) Invoke the symbol dictionary decoding procedure described in 6.5, with the parameters to the symbol dictionary decoding procedure set as shown in Table 31." SymbolDictionaryDecodingInputParameters inputs; inputs.uses_huffman_encoding = uses_huffman_encoding; inputs.uses_refinement_or_aggregate_coding = uses_refinement_or_aggregate_coding; inputs.input_symbols = move(symbols); inputs.number_of_new_symbols = number_of_new_symbols; inputs.number_of_exported_symbols = number_of_exported_symbols; // FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST inputs.symbol_template = template_used; inputs.adaptive_template_pixels = adaptive_template; inputs.refinement_template = refinement_template_used; inputs.refinement_adaptive_template_pixels = adaptive_refinement_template; auto result = TRY(symbol_dictionary_decoding_procedure(inputs, segment.data.slice(TRY(stream.tell())))); // "7) If the "bitmap coding context retained" bit in the header was 1, then, as described in E.3.8, preserve the current contents // of the arithmetic coding statistics for the generic region and generic refinement region decoding procedures." if (bitmap_coding_context_retained) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot retain bitmap coding context yet"); segment.symbols = move(result); return {}; } static ErrorOr decode_intermediate_text_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate text region yet"); } static ErrorOr decode_immediate_text_region(JBIG2LoadingContext& context, SegmentData const& segment) { // 7.4.3 Text region segment syntax auto data = segment.data; auto information_field = TRY(decode_region_segment_information_field(data)); data = data.slice(sizeof(information_field)); dbgln_if(JBIG2_DEBUG, "Text region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags); FixedMemoryStream stream(data); // 7.4.3.1.1 Text region segment flags u16 text_region_segment_flags = TRY(stream.read_value>()); bool uses_huffman_encoding = (text_region_segment_flags & 1) != 0; // "SBHUFF" in spec. bool uses_refinement_coding = (text_region_segment_flags >> 1) & 1; // "SBREFINE" in spec. u8 log_strip_size = (text_region_segment_flags >> 2) & 3; // "LOGSBSTRIPS" in spec. u8 strip_size = 1u << log_strip_size; u8 reference_corner = (text_region_segment_flags >> 4) & 3; // "REFCORNER" bool is_transposed = (text_region_segment_flags >> 6) & 1; // "TRANSPOSED" in spec. u8 combination_operator = (text_region_segment_flags >> 7) & 3; // "SBCOMBOP" in spec. if (combination_operator > 4) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid text region combination operator"); u8 default_pixel_value = (text_region_segment_flags >> 9) & 1; // "SBDEFPIXEL" in spec. u8 delta_s_offset_value = (text_region_segment_flags >> 10) & 0x1f; // "SBDSOFFSET" in spec. i8 delta_s_offset = delta_s_offset_value; if (delta_s_offset_value & 0x10) { // This is converting a 5-bit two's complement number ot i8. // FIXME: There's probably a simpler way to do this? Probably just sign-extend by or-ing in the top 3 bits? delta_s_offset_value = (~delta_s_offset_value + 1) & 0x1f; delta_s_offset = -delta_s_offset_value; } u8 refinement_template = (text_region_segment_flags >> 15) != 0; // "SBRTEMPLATE" in spec. if (!uses_refinement_coding && refinement_template != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template"); // 7.4.3.1.2 Text region segment Huffman flags // "This field is only present if SBHUFF is 1." // FIXME: Support this eventually. if (uses_huffman_encoding) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet"); // 7.4.3.1.3 Text region refinement AT flags // "This field is only present if SBREFINE is 1 and SBRTEMPLATE is 0." Array adaptive_refinement_template {}; if (uses_refinement_coding && refinement_template == 0) { for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) { adaptive_refinement_template[i].x = TRY(stream.read_value()); adaptive_refinement_template[i].y = TRY(stream.read_value()); } } // 7.4.3.1.4 Number of symbol instances (SBNUMINSTANCES) u32 number_of_symbol_instances = TRY(stream.read_value>()); // 7.4.3.1.5 Text region segment symbol ID Huffman decoding table // "It is only present if SBHUFF is 1." // FIXME: Support this eventually. // 7.4.3.2 Decoding a text region segment // "1) Interpret its header, as described in 7.4.3.1." // Done! // "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments." Vector> symbols; for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) { auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number); if (!opt_referred_to_segment.has_value()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment refers to non-existent segment"); dbgln_if(JBIG2_DEBUG, "Text segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value()); auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()]; if (!referred_to_segment.symbols.has_value()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment referred-to segment without symbols"); symbols.extend(referred_to_segment.symbols.value()); } // "3) As described in E.3.7, reset all the arithmetic coding statistics to zero." // FIXME // "4) Invoke the text region decoding procedure described in 6.4, with the parameters to the text region decoding procedure set as shown in Table 34." TextRegionDecodingInputParameters inputs; inputs.uses_huffman_encoding = uses_huffman_encoding; inputs.uses_refinement_coding = uses_refinement_coding; inputs.default_pixel = default_pixel_value; inputs.operator_ = static_cast(combination_operator); inputs.is_transposed = is_transposed; inputs.reference_corner = static_cast(reference_corner); inputs.delta_s_offset = delta_s_offset; inputs.region_width = information_field.width; inputs.region_height = information_field.height; inputs.number_of_instances = number_of_symbol_instances; inputs.size_of_symbol_instance_strips = strip_size; inputs.id_symbol_code_length = ceil(log2(symbols.size())); inputs.symbols = move(symbols); // FIXME: Huffman tables. inputs.refinement_template = refinement_template; inputs.refinement_adaptive_template_pixels = adaptive_refinement_template; auto result = TRY(text_region_decoding_procedure(inputs, data.slice(TRY(stream.tell())))); composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator()); return {}; } static ErrorOr decode_pattern_dictionary(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode pattern dictionary yet"); } static ErrorOr decode_intermediate_halftone_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate halftone region yet"); } static ErrorOr decode_immediate_halftone_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate halftone region yet"); } static ErrorOr decode_immediate_lossless_halftone_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless halftone region yet"); } static ErrorOr decode_intermediate_generic_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic region yet"); } static ErrorOr decode_immediate_generic_region(JBIG2LoadingContext& context, SegmentData const& segment) { // 7.4.6 Generic region segment syntax auto data = segment.data; auto information_field = TRY(decode_region_segment_information_field(data)); data = data.slice(sizeof(information_field)); dbgln_if(JBIG2_DEBUG, "Generic region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags); // 7.4.6.2 Generic region segment flags if (data.is_empty()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: No segment data"); u8 flags = data[0]; bool uses_mmr = (flags & 1) != 0; u8 arithmetic_coding_template = (flags >> 1) & 3; // "GBTEMPLATE" bool typical_prediction_generic_decoding_on = (flags >> 3) & 1; // "TPGDON"; "TPGD" is short for "Typical Prediction for Generic Direct coding" bool uses_extended_reference_template = (flags >> 4) & 1; // "EXTTEMPLATE" if (flags & 0b1110'0000) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid flags"); data = data.slice(sizeof(flags)); // 7.4.6.3 Generic region segment AT flags Array adaptive_template_pixels {}; if (!uses_mmr) { dbgln_if(JBIG2_DEBUG, "Non-MMR generic region, GBTEMPLATE={} TPGDON={} EXTTEMPLATE={}", arithmetic_coding_template, typical_prediction_generic_decoding_on, uses_extended_reference_template); if (arithmetic_coding_template == 0 && uses_extended_reference_template) { // This was added in T.88 Amendment 2 (https://www.itu.int/rec/T-REC-T.88-200306-S!Amd2/en) mid-2003. // I haven't seen it being used in the wild, and the spec says "32-byte field as shown below" and then shows 24 bytes, // so it's not clear how much data to read. return Error::from_string_literal("JBIG2ImageDecoderPlugin: GBTEMPLATE=0 EXTTEMPLATE=1 not yet implemented"); } size_t number_of_adaptive_template_pixels = arithmetic_coding_template == 0 ? 4 : 1; if (data.size() < 2 * number_of_adaptive_template_pixels) return Error::from_string_literal("JBIG2ImageDecoderPlugin: No adaptive template data"); for (size_t i = 0; i < number_of_adaptive_template_pixels; ++i) { adaptive_template_pixels[i].x = static_cast(data[2 * i]); adaptive_template_pixels[i].y = static_cast(data[2 * i + 1]); } data = data.slice(2 * number_of_adaptive_template_pixels); } // 7.4.6.4 Decoding a generic region segment // "1) Interpret its header, as described in 7.4.6.1" // Done above. // "2) As described in E.3.7, reset all the arithmetic coding statistics to zero." Vector contexts; contexts.resize(1 << number_of_context_bits_for_template(arithmetic_coding_template)); // "3) Invoke the generic region decoding procedure described in 6.2, with the parameters to the generic region decoding procedure set as shown in Table 37." GenericRegionDecodingInputParameters inputs; inputs.is_modified_modified_read = uses_mmr; inputs.region_width = information_field.width; inputs.region_height = information_field.height; inputs.gb_template = arithmetic_coding_template; inputs.is_typical_prediction_used = typical_prediction_generic_decoding_on; inputs.is_extended_reference_template_used = uses_extended_reference_template; inputs.skip_pattern = OptionalNone {}; inputs.adaptive_template_pixels = adaptive_template_pixels; Optional decoder; if (!uses_mmr) { decoder = TRY(JBIG2::ArithmeticDecoder::initialize(data)); inputs.arithmetic_decoder = &decoder.value(); } auto result = TRY(generic_region_decoding_procedure(inputs, data, contexts)); // 8.2 Page image composition step 5) if (information_field.x_location + information_field.width > (u32)context.page.size.width() || information_field.y_location + information_field.height > (u32)context.page.size.height()) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Region bounds outsize of page bounds"); } composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator()); return {}; } static ErrorOr decode_intermediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic refinement region yet"); } static ErrorOr decode_immediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate generic refinement region yet"); } static ErrorOr decode_immediate_lossless_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless generic refinement region yet"); } static ErrorOr decode_page_information(JBIG2LoadingContext& context, SegmentData const& segment) { // 7.4.8 Page information segment syntax and 8.1 Decoder model steps 1) - 3). // "1) Decode the page information segment."" auto page_information = TRY(decode_page_information_segment(segment.data)); bool page_is_striped = (page_information.striping_information & 0x80) != 0; if (page_information.bitmap_height == 0xffff'ffff && !page_is_striped) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Non-striped bitmaps of indeterminate height not allowed"); u16 maximum_stripe_height = page_information.striping_information & 0x7F; u8 default_color = (page_information.flags >> 2) & 1; u8 default_combination_operator = (page_information.flags >> 3) & 3; context.page.default_combination_operator = static_cast(default_combination_operator); dbgln_if(JBIG2_DEBUG, "Page information: width={}, height={}, is_striped={}, max_stripe_height={}, default_color={}, default_combination_operator={}", page_information.bitmap_width, page_information.bitmap_height, page_is_striped, maximum_stripe_height, default_color, default_combination_operator); // FIXME: Do something with the other fields in page_information. // "2) Create the page buffer, of the size given in the page information segment. // // If the page height is unknown, then this is not possible. However, in this case the page must be striped, // and the maximum stripe height specified, and the initial page buffer can be created with height initially // equal to this maximum stripe height." size_t height = page_information.bitmap_height; if (height == 0xffff'ffff) height = maximum_stripe_height; context.page.bits = TRY(BitBuffer::create(page_information.bitmap_width, height)); // "3) Fill the page buffer with the page's default pixel value." context.page.bits->fill(default_color != 0); return {}; } static ErrorOr decode_end_of_page(JBIG2LoadingContext&, SegmentData const& segment) { // 7.4.9 End of page segment syntax if (segment.data.size() != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of page segment has non-zero size"); // FIXME: If the page had unknown height, check that previous segment was end-of-stripe. // FIXME: Maybe mark page as completed and error if we see more segments for it? return {}; } static ErrorOr decode_end_of_stripe(JBIG2LoadingContext&, SegmentData const& segment) { // 7.4.10 End of stripe segment syntax // "The segment data of an end of stripe segment consists of one four-byte value, specifying the Y coordinate of the end row." if (segment.data.size() != 4) return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of strip segment has wrong size"); // FIXME: Once we implement support for images with initially indeterminate height, we need these values to determine the height at the end. u32 y_coordinate = *reinterpret_cast const*>(segment.data.data()); dbgln_if(JBIG2_DEBUG, "End of stripe: y={}", y_coordinate); return {}; } static ErrorOr decode_end_of_file(JBIG2LoadingContext&, SegmentData const& segment) { // 7.4.11 End of file segment syntax if (segment.data.size() != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment has non-zero size"); return {}; } static ErrorOr decode_profiles(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode profiles yet"); } static ErrorOr decode_tables(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode tables yet"); } static ErrorOr decode_color_palette(JBIG2LoadingContext&, SegmentData const&) { return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode color palette yet"); } static ErrorOr decode_extension(JBIG2LoadingContext&, SegmentData const& segment) { // 7.4.14 Extension segment syntax FixedMemoryStream stream { segment.data }; enum ExtensionType { SingleByteCodedComment = 0x20000000, MultiByteCodedComment = 0x20000002, }; u32 type = TRY(stream.read_value>()); auto read_string = [&]() -> ErrorOr> { Vector result; do { result.append(TRY(stream.read_value>())); } while (result.last()); result.take_last(); return result; }; switch (type) { case SingleByteCodedComment: { // 7.4.15.1 Single-byte coded comment // Pairs of zero-terminated ISO/IEC 8859-1 (latin1) pairs, terminated by another \0. while (true) { auto first_bytes = TRY(read_string.template operator()()); if (first_bytes.is_empty()) break; auto second_bytes = TRY(read_string.template operator()()); auto first = TRY(TextCodec::decoder_for("ISO-8859-1"sv)->to_utf8(StringView { first_bytes })); auto second = TRY(TextCodec::decoder_for("ISO-8859-1"sv)->to_utf8(StringView { second_bytes })); dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second); } if (!stream.is_eof()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after SingleByteCodedComment"); return {}; } case MultiByteCodedComment: { // 7.4.15.2 Multi-byte coded comment // Pairs of (two-byte-)zero-terminated UCS-2 pairs, terminated by another \0\0. while (true) { auto first_ucs2 = TRY(read_string.template operator()()); if (first_ucs2.is_empty()) break; auto second_ucs2 = TRY(read_string.template operator()()); auto first = TRY(Utf16View(first_ucs2).to_utf8()); auto second = TRY(Utf16View(second_ucs2).to_utf8()); dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second); } if (!stream.is_eof()) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after MultiByteCodedComment"); return {}; } } // FIXME: If bit 31 in `type` is not set, the extension isn't necessary, and we could ignore it. dbgln("JBIG2ImageDecoderPlugin: Unknown extension type {:#x}", type); return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown extension type"); } static ErrorOr decode_data(JBIG2LoadingContext& context) { TRY(warn_about_multiple_pages(context)); for (size_t i = 0; i < context.segments.size(); ++i) { auto& segment = context.segments[i]; if (segment.header.page_association != 0 && segment.header.page_association != 1) continue; switch (segment.header.type) { case SegmentType::SymbolDictionary: TRY(decode_symbol_dictionary(context, segment)); break; case SegmentType::IntermediateTextRegion: TRY(decode_intermediate_text_region(context, segment)); break; case SegmentType::ImmediateTextRegion: case SegmentType::ImmediateLosslessTextRegion: // 7.4.3 Text region segment syntax // "The data parts of all three of the text region segment types ("intermediate text region", "immediate text region" and // "immediate lossless text region") are coded identically, but are acted upon differently, see 8.2." // But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell, // and calling the immediate text region handler for immediate lossless text regions seems to do the right thing (?). TRY(decode_immediate_text_region(context, segment)); break; case SegmentType::PatternDictionary: TRY(decode_pattern_dictionary(context, segment)); break; case SegmentType::IntermediateHalftoneRegion: TRY(decode_intermediate_halftone_region(context, segment)); break; case SegmentType::ImmediateHalftoneRegion: TRY(decode_immediate_halftone_region(context, segment)); break; case SegmentType::ImmediateLosslessHalftoneRegion: TRY(decode_immediate_lossless_halftone_region(context, segment)); break; case SegmentType::IntermediateGenericRegion: TRY(decode_intermediate_generic_region(context, segment)); break; case SegmentType::ImmediateGenericRegion: case SegmentType::ImmediateLosslessGenericRegion: // 7.4.6 Generic region segment syntax // "The data parts of all three of the generic region segment types ("intermediate generic region", "immediate generic region" and // "immediate lossless generic region") are coded identically, but are acted upon differently, see 8.2." // But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell, // and calling the immediate generic region handler for immediate generic lossless regions seems to do the right thing (?). TRY(decode_immediate_generic_region(context, segment)); break; case SegmentType::IntermediateGenericRefinementRegion: TRY(decode_intermediate_generic_refinement_region(context, segment)); break; case SegmentType::ImmediateGenericRefinementRegion: TRY(decode_immediate_generic_refinement_region(context, segment)); break; case SegmentType::ImmediateLosslessGenericRefinementRegion: TRY(decode_immediate_lossless_generic_refinement_region(context, segment)); break; case SegmentType::PageInformation: TRY(decode_page_information(context, segment)); break; case SegmentType::EndOfPage: TRY(decode_end_of_page(context, segment)); break; case SegmentType::EndOfStripe: TRY(decode_end_of_stripe(context, segment)); break; case SegmentType::EndOfFile: TRY(decode_end_of_file(context, segment)); // "If a file contains an end of file segment, it must be the last segment." if (i != context.segments.size() - 1) return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment not last segment"); break; case SegmentType::Profiles: TRY(decode_profiles(context, segment)); break; case SegmentType::Tables: TRY(decode_tables(context, segment)); break; case SegmentType::ColorPalette: TRY(decode_color_palette(context, segment)); break; case SegmentType::Extension: TRY(decode_extension(context, segment)); break; } } return {}; } JBIG2ImageDecoderPlugin::JBIG2ImageDecoderPlugin() { m_context = make(); } IntSize JBIG2ImageDecoderPlugin::size() { return m_context->page.size; } bool JBIG2ImageDecoderPlugin::sniff(ReadonlyBytes data) { return data.starts_with(id_string); } ErrorOr> JBIG2ImageDecoderPlugin::create(ReadonlyBytes data) { auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin())); TRY(decode_jbig2_header(*plugin->m_context, data)); data = data.slice(sizeof(id_string) + sizeof(u8) + (plugin->m_context->number_of_pages.has_value() ? sizeof(u32) : 0)); TRY(decode_segment_headers(*plugin->m_context, data)); TRY(scan_for_page_size(*plugin->m_context)); return plugin; } ErrorOr JBIG2ImageDecoderPlugin::frame(size_t index, Optional) { // FIXME: Use this for multi-page JBIG2 files? if (index != 0) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid frame index"); if (m_context->state == JBIG2LoadingContext::State::Error) return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoding failed"); if (m_context->state < JBIG2LoadingContext::State::Decoded) { auto result = decode_data(*m_context); if (result.is_error()) { m_context->state = JBIG2LoadingContext::State::Error; return result.release_error(); } m_context->state = JBIG2LoadingContext::State::Decoded; } auto bitmap = TRY(m_context->page.bits->to_gfx_bitmap()); return ImageFrameDescriptor { move(bitmap), 0 }; } ErrorOr JBIG2ImageDecoderPlugin::decode_embedded(Vector data) { auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin())); plugin->m_context->organization = Organization::Embedded; for (auto const& segment_data : data) TRY(decode_segment_headers(*plugin->m_context, segment_data)); TRY(scan_for_page_size(*plugin->m_context)); TRY(decode_data(*plugin->m_context)); return plugin->m_context->page.bits->to_byte_buffer(); } }