X448.cpp 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. /*
  2. * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/ByteReader.h>
  7. #include <AK/Endian.h>
  8. #include <AK/Random.h>
  9. #include <LibCrypto/Curves/X448.h>
  10. namespace Crypto::Curves {
  11. static constexpr u16 BITS = 448;
  12. static constexpr u8 BYTES = 56;
  13. static constexpr u8 WORDS = 14;
  14. static constexpr u32 A24 = 39082;
  15. static void import_state(u32* state, ReadonlyBytes data)
  16. {
  17. for (auto i = 0; i < WORDS; i++) {
  18. u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
  19. state[i] = AK::convert_between_host_and_little_endian(value);
  20. }
  21. }
  22. static ErrorOr<ByteBuffer> export_state(u32* data)
  23. {
  24. auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
  25. for (auto i = 0; i < WORDS; i++) {
  26. u32 value = AK::convert_between_host_and_little_endian(data[i]);
  27. ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
  28. }
  29. return buffer;
  30. }
  31. static void select(u32* state, u32* a, u32* b, u32 condition)
  32. {
  33. // If B < (2^448 - 2^224 + 1) then R = B, else R = A
  34. u32 mask = condition - 1;
  35. for (auto i = 0; i < WORDS; i++) {
  36. state[i] = (a[i] & mask) | (b[i] & ~mask);
  37. }
  38. }
  39. static void set(u32* state, u32 value)
  40. {
  41. state[0] = value;
  42. for (auto i = 1; i < WORDS; i++) {
  43. state[i] = 0;
  44. }
  45. }
  46. static void copy(u32* state, u32* value)
  47. {
  48. for (auto i = 0; i < WORDS; i++) {
  49. state[i] = value[i];
  50. }
  51. }
  52. static void conditional_swap(u32* first, u32* second, u32 condition)
  53. {
  54. u32 mask = ~condition + 1;
  55. for (auto i = 0; i < WORDS; i++) {
  56. u32 temp = mask & (first[i] ^ second[i]);
  57. first[i] ^= temp;
  58. second[i] ^= temp;
  59. }
  60. }
  61. static void modular_reduce(u32* state, u32* data, u32 a_high)
  62. {
  63. u64 temp = 1;
  64. u32 other[WORDS];
  65. // Compute B = A - (2^448 - 2^224 - 1)
  66. for (auto i = 0; i < WORDS / 2; i++) {
  67. temp += data[i];
  68. other[i] = temp & 0xFFFFFFFF;
  69. temp >>= 32;
  70. }
  71. temp += 1;
  72. for (auto i = 7; i < WORDS; i++) {
  73. temp += data[i];
  74. other[i] = temp & 0xFFFFFFFF;
  75. temp >>= 32;
  76. }
  77. auto condition = (a_high + (u32)temp - 1) & 1;
  78. select(state, other, data, condition);
  79. }
  80. static void modular_multiply_single(u32* state, u32* first, u32 second)
  81. {
  82. // Compute R = (A * B) mod p
  83. u64 temp = 0;
  84. u64 carry = 0;
  85. u32 output[WORDS];
  86. for (auto i = 0; i < WORDS; i++) {
  87. temp += (u64)first[i] * second;
  88. output[i] = temp & 0xFFFFFFFF;
  89. temp >>= 32;
  90. }
  91. // Fast modular reduction
  92. carry = temp;
  93. for (auto i = 0; i < WORDS / 2; i++) {
  94. temp += output[i];
  95. output[i] = temp & 0xFFFFFFFF;
  96. temp >>= 32;
  97. }
  98. temp += carry;
  99. for (auto i = WORDS / 2; i < WORDS; i++) {
  100. temp += output[i];
  101. output[i] = temp & 0xFFFFFFFF;
  102. temp >>= 32;
  103. }
  104. modular_reduce(state, output, (u32)temp);
  105. }
  106. static void modular_multiply(u32* state, u32* first, u32* second)
  107. {
  108. // Compute R = (A * B) mod p
  109. u64 temp = 0;
  110. u64 carry = 0;
  111. u32 output[WORDS * 2];
  112. // Comba's method
  113. for (auto i = 0; i < WORDS * 2; i++) {
  114. if (i < 14) {
  115. for (auto j = 0; j <= i; j++) {
  116. temp += (u64)first[j] * second[i - j];
  117. carry += temp >> 32;
  118. temp &= 0xFFFFFFFF;
  119. }
  120. } else {
  121. for (auto j = i - 13; j < WORDS; j++) {
  122. temp += (u64)first[j] * second[i - j];
  123. carry += temp >> 32;
  124. temp &= 0xFFFFFFFF;
  125. }
  126. }
  127. output[i] = temp & 0xFFFFFFFF;
  128. temp = carry & 0xFFFFFFFF;
  129. carry >>= 32;
  130. }
  131. // Fast modular reduction (first pass)
  132. temp = 0;
  133. for (auto i = 0; i < WORDS / 2; i++) {
  134. temp += output[i];
  135. temp += output[i + 14];
  136. temp += output[i + 21];
  137. output[i] = temp & 0xFFFFFFFF;
  138. temp >>= 32;
  139. }
  140. for (auto i = WORDS / 2; i < WORDS; i++) {
  141. temp += output[i];
  142. temp += output[i + 7];
  143. temp += output[i + 14];
  144. temp += output[i + 14];
  145. output[i] = temp & 0xFFFFFFFF;
  146. temp >>= 32;
  147. }
  148. // Fast modular reduction (second pass)
  149. carry = temp;
  150. for (auto i = 0; i < WORDS / 2; i++) {
  151. temp += output[i];
  152. output[i] = temp & 0xFFFFFFFF;
  153. temp >>= 32;
  154. }
  155. temp += carry;
  156. for (auto i = WORDS / 2; i < WORDS; i++) {
  157. temp += output[i];
  158. output[i] = temp & 0xFFFFFFFF;
  159. temp >>= 32;
  160. }
  161. modular_reduce(state, output, (u32)temp);
  162. }
  163. static void modular_square(u32* state, u32* value)
  164. {
  165. // Compute R = (A ^ 2) mod p
  166. modular_multiply(state, value, value);
  167. }
  168. static void modular_add(u32* state, u32* first, u32* second)
  169. {
  170. u64 temp = 0;
  171. // Compute R = A + B
  172. for (auto i = 0; i < WORDS; i++) {
  173. temp += first[i];
  174. temp += second[i];
  175. state[i] = temp & 0xFFFFFFFF;
  176. temp >>= 32;
  177. }
  178. modular_reduce(state, state, (u32)temp);
  179. }
  180. static void modular_subtract(u32* state, u32* first, u32* second)
  181. {
  182. i64 temp = -1;
  183. // Compute R = A + (2^448 - 2^224 - 1) - B
  184. for (auto i = 0; i < 7; i++) {
  185. temp += first[i];
  186. temp -= second[i];
  187. state[i] = temp & 0xFFFFFFFF;
  188. temp >>= 32;
  189. }
  190. temp -= 1;
  191. for (auto i = 7; i < 14; i++) {
  192. temp += first[i];
  193. temp -= second[i];
  194. state[i] = temp & 0xFFFFFFFF;
  195. temp >>= 32;
  196. }
  197. temp += 1;
  198. modular_reduce(state, state, (u32)temp);
  199. }
  200. static void to_power_of_2n(u32* state, u32* value, u8 n)
  201. {
  202. // Compute R = (A ^ (2^n)) mod p
  203. modular_square(state, value);
  204. for (auto i = 1; i < n; i++) {
  205. modular_square(state, state);
  206. }
  207. }
  208. static void modular_multiply_inverse(u32* state, u32* value)
  209. {
  210. // Compute R = A^-1 mod p
  211. u32 u[WORDS];
  212. u32 v[WORDS];
  213. modular_square(u, value);
  214. modular_multiply(u, u, value);
  215. modular_square(u, u);
  216. modular_multiply(v, u, value);
  217. to_power_of_2n(u, v, 3);
  218. modular_multiply(v, u, v);
  219. to_power_of_2n(u, v, 6);
  220. modular_multiply(u, u, v);
  221. modular_square(u, u);
  222. modular_multiply(v, u, value);
  223. to_power_of_2n(u, v, 13);
  224. modular_multiply(u, u, v);
  225. modular_square(u, u);
  226. modular_multiply(v, u, value);
  227. to_power_of_2n(u, v, 27);
  228. modular_multiply(u, u, v);
  229. modular_square(u, u);
  230. modular_multiply(v, u, value);
  231. to_power_of_2n(u, v, 55);
  232. modular_multiply(u, u, v);
  233. modular_square(u, u);
  234. modular_multiply(v, u, value);
  235. to_power_of_2n(u, v, 111);
  236. modular_multiply(v, u, v);
  237. modular_square(u, v);
  238. modular_multiply(u, u, value);
  239. to_power_of_2n(u, u, 223);
  240. modular_multiply(u, u, v);
  241. modular_square(u, u);
  242. modular_square(u, u);
  243. modular_multiply(state, u, value);
  244. }
  245. ErrorOr<ByteBuffer> X448::generate_private_key()
  246. {
  247. auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
  248. fill_with_random(buffer);
  249. return buffer;
  250. }
  251. ErrorOr<ByteBuffer> X448::generate_public_key(ReadonlyBytes a)
  252. {
  253. u8 generator[BYTES] { 5 };
  254. return compute_coordinate(a, { generator, BYTES });
  255. }
  256. // https://datatracker.ietf.org/doc/html/rfc7748#section-5
  257. ErrorOr<ByteBuffer> X448::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
  258. {
  259. u32 k[WORDS] {};
  260. u32 u[WORDS] {};
  261. u32 x1[WORDS] {};
  262. u32 x2[WORDS] {};
  263. u32 z1[WORDS] {};
  264. u32 z2[WORDS] {};
  265. u32 t1[WORDS] {};
  266. u32 t2[WORDS] {};
  267. // Copy input to internal state
  268. import_state(k, input_k);
  269. // Set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1
  270. k[0] &= 0xFFFFFFFC;
  271. k[13] |= 0x80000000;
  272. // Copy coordinate to internal state
  273. import_state(u, input_u);
  274. // Implementations MUST accept non-canonical values and process them as
  275. // if they had been reduced modulo the field prime.
  276. modular_reduce(u, u, 0);
  277. set(x1, 1);
  278. set(z1, 0);
  279. copy(x2, u);
  280. set(z2, 1);
  281. // Montgomery ladder
  282. u32 swap = 0;
  283. for (auto i = BITS - 1; i >= 0; i--) {
  284. u32 b = (k[i / 32] >> (i % 32)) & 1;
  285. conditional_swap(x1, x2, swap ^ b);
  286. conditional_swap(z1, z2, swap ^ b);
  287. swap = b;
  288. modular_add(t1, x2, z2);
  289. modular_subtract(x2, x2, z2);
  290. modular_add(z2, x1, z1);
  291. modular_subtract(x1, x1, z1);
  292. modular_multiply(t1, t1, x1);
  293. modular_multiply(x2, x2, z2);
  294. modular_square(z2, z2);
  295. modular_square(x1, x1);
  296. modular_subtract(t2, z2, x1);
  297. modular_multiply_single(z1, t2, A24);
  298. modular_add(z1, z1, x1);
  299. modular_multiply(z1, z1, t2);
  300. modular_multiply(x1, x1, z2);
  301. modular_subtract(z2, t1, x2);
  302. modular_square(z2, z2);
  303. modular_multiply(z2, z2, u);
  304. modular_add(x2, x2, t1);
  305. modular_square(x2, x2);
  306. }
  307. conditional_swap(x1, x2, swap);
  308. conditional_swap(z1, z2, swap);
  309. // Retrieve affine representation
  310. modular_multiply_inverse(u, z1);
  311. modular_multiply(u, u, x1);
  312. // Encode state for export
  313. return export_state(u);
  314. }
  315. ErrorOr<ByteBuffer> X448::derive_premaster_key(ReadonlyBytes shared_point)
  316. {
  317. VERIFY(shared_point.size() == BYTES);
  318. ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
  319. return premaster_key;
  320. }
  321. }