123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- /*
- * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/ByteReader.h>
- #include <AK/Endian.h>
- #include <AK/Random.h>
- #include <LibCrypto/Curves/X448.h>
- namespace Crypto::Curves {
- static constexpr u16 BITS = 448;
- static constexpr u8 BYTES = 56;
- static constexpr u8 WORDS = 14;
- static constexpr u32 A24 = 39082;
- static void import_state(u32* state, ReadonlyBytes data)
- {
- for (auto i = 0; i < WORDS; i++) {
- u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
- state[i] = AK::convert_between_host_and_little_endian(value);
- }
- }
- static ErrorOr<ByteBuffer> export_state(u32* data)
- {
- auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
- for (auto i = 0; i < WORDS; i++) {
- u32 value = AK::convert_between_host_and_little_endian(data[i]);
- ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
- }
- return buffer;
- }
- static void select(u32* state, u32* a, u32* b, u32 condition)
- {
- // If B < (2^448 - 2^224 + 1) then R = B, else R = A
- u32 mask = condition - 1;
- for (auto i = 0; i < WORDS; i++) {
- state[i] = (a[i] & mask) | (b[i] & ~mask);
- }
- }
- static void set(u32* state, u32 value)
- {
- state[0] = value;
- for (auto i = 1; i < WORDS; i++) {
- state[i] = 0;
- }
- }
- static void copy(u32* state, u32* value)
- {
- for (auto i = 0; i < WORDS; i++) {
- state[i] = value[i];
- }
- }
- static void conditional_swap(u32* first, u32* second, u32 condition)
- {
- u32 mask = ~condition + 1;
- for (auto i = 0; i < WORDS; i++) {
- u32 temp = mask & (first[i] ^ second[i]);
- first[i] ^= temp;
- second[i] ^= temp;
- }
- }
- static void modular_reduce(u32* state, u32* data, u32 a_high)
- {
- u64 temp = 1;
- u32 other[WORDS];
- // Compute B = A - (2^448 - 2^224 - 1)
- for (auto i = 0; i < WORDS / 2; i++) {
- temp += data[i];
- other[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- temp += 1;
- for (auto i = 7; i < WORDS; i++) {
- temp += data[i];
- other[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- auto condition = (a_high + (u32)temp - 1) & 1;
- select(state, other, data, condition);
- }
- static void modular_multiply_single(u32* state, u32* first, u32 second)
- {
- // Compute R = (A * B) mod p
- u64 temp = 0;
- u64 carry = 0;
- u32 output[WORDS];
- for (auto i = 0; i < WORDS; i++) {
- temp += (u64)first[i] * second;
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- // Fast modular reduction
- carry = temp;
- for (auto i = 0; i < WORDS / 2; i++) {
- temp += output[i];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- temp += carry;
- for (auto i = WORDS / 2; i < WORDS; i++) {
- temp += output[i];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- modular_reduce(state, output, (u32)temp);
- }
- static void modular_multiply(u32* state, u32* first, u32* second)
- {
- // Compute R = (A * B) mod p
- u64 temp = 0;
- u64 carry = 0;
- u32 output[WORDS * 2];
- // Comba's method
- for (auto i = 0; i < WORDS * 2; i++) {
- if (i < 14) {
- for (auto j = 0; j <= i; j++) {
- temp += (u64)first[j] * second[i - j];
- carry += temp >> 32;
- temp &= 0xFFFFFFFF;
- }
- } else {
- for (auto j = i - 13; j < WORDS; j++) {
- temp += (u64)first[j] * second[i - j];
- carry += temp >> 32;
- temp &= 0xFFFFFFFF;
- }
- }
- output[i] = temp & 0xFFFFFFFF;
- temp = carry & 0xFFFFFFFF;
- carry >>= 32;
- }
- // Fast modular reduction (first pass)
- temp = 0;
- for (auto i = 0; i < WORDS / 2; i++) {
- temp += output[i];
- temp += output[i + 14];
- temp += output[i + 21];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- for (auto i = WORDS / 2; i < WORDS; i++) {
- temp += output[i];
- temp += output[i + 7];
- temp += output[i + 14];
- temp += output[i + 14];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- // Fast modular reduction (second pass)
- carry = temp;
- for (auto i = 0; i < WORDS / 2; i++) {
- temp += output[i];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- temp += carry;
- for (auto i = WORDS / 2; i < WORDS; i++) {
- temp += output[i];
- output[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- modular_reduce(state, output, (u32)temp);
- }
- static void modular_square(u32* state, u32* value)
- {
- // Compute R = (A ^ 2) mod p
- modular_multiply(state, value, value);
- }
- static void modular_add(u32* state, u32* first, u32* second)
- {
- u64 temp = 0;
- // Compute R = A + B
- for (auto i = 0; i < WORDS; i++) {
- temp += first[i];
- temp += second[i];
- state[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- modular_reduce(state, state, (u32)temp);
- }
- static void modular_subtract(u32* state, u32* first, u32* second)
- {
- i64 temp = -1;
- // Compute R = A + (2^448 - 2^224 - 1) - B
- for (auto i = 0; i < 7; i++) {
- temp += first[i];
- temp -= second[i];
- state[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- temp -= 1;
- for (auto i = 7; i < 14; i++) {
- temp += first[i];
- temp -= second[i];
- state[i] = temp & 0xFFFFFFFF;
- temp >>= 32;
- }
- temp += 1;
- modular_reduce(state, state, (u32)temp);
- }
- static void to_power_of_2n(u32* state, u32* value, u8 n)
- {
- // Compute R = (A ^ (2^n)) mod p
- modular_square(state, value);
- for (auto i = 1; i < n; i++) {
- modular_square(state, state);
- }
- }
- static void modular_multiply_inverse(u32* state, u32* value)
- {
- // Compute R = A^-1 mod p
- u32 u[WORDS];
- u32 v[WORDS];
- modular_square(u, value);
- modular_multiply(u, u, value);
- modular_square(u, u);
- modular_multiply(v, u, value);
- to_power_of_2n(u, v, 3);
- modular_multiply(v, u, v);
- to_power_of_2n(u, v, 6);
- modular_multiply(u, u, v);
- modular_square(u, u);
- modular_multiply(v, u, value);
- to_power_of_2n(u, v, 13);
- modular_multiply(u, u, v);
- modular_square(u, u);
- modular_multiply(v, u, value);
- to_power_of_2n(u, v, 27);
- modular_multiply(u, u, v);
- modular_square(u, u);
- modular_multiply(v, u, value);
- to_power_of_2n(u, v, 55);
- modular_multiply(u, u, v);
- modular_square(u, u);
- modular_multiply(v, u, value);
- to_power_of_2n(u, v, 111);
- modular_multiply(v, u, v);
- modular_square(u, v);
- modular_multiply(u, u, value);
- to_power_of_2n(u, u, 223);
- modular_multiply(u, u, v);
- modular_square(u, u);
- modular_square(u, u);
- modular_multiply(state, u, value);
- }
- ErrorOr<ByteBuffer> X448::generate_private_key()
- {
- auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
- fill_with_random(buffer);
- return buffer;
- }
- ErrorOr<ByteBuffer> X448::generate_public_key(ReadonlyBytes a)
- {
- u8 generator[BYTES] { 5 };
- return compute_coordinate(a, { generator, BYTES });
- }
- // https://datatracker.ietf.org/doc/html/rfc7748#section-5
- ErrorOr<ByteBuffer> X448::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
- {
- u32 k[WORDS] {};
- u32 u[WORDS] {};
- u32 x1[WORDS] {};
- u32 x2[WORDS] {};
- u32 z1[WORDS] {};
- u32 z2[WORDS] {};
- u32 t1[WORDS] {};
- u32 t2[WORDS] {};
- // Copy input to internal state
- import_state(k, input_k);
- // Set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1
- k[0] &= 0xFFFFFFFC;
- k[13] |= 0x80000000;
- // Copy coordinate to internal state
- import_state(u, input_u);
- // Implementations MUST accept non-canonical values and process them as
- // if they had been reduced modulo the field prime.
- modular_reduce(u, u, 0);
- set(x1, 1);
- set(z1, 0);
- copy(x2, u);
- set(z2, 1);
- // Montgomery ladder
- u32 swap = 0;
- for (auto i = BITS - 1; i >= 0; i--) {
- u32 b = (k[i / 32] >> (i % 32)) & 1;
- conditional_swap(x1, x2, swap ^ b);
- conditional_swap(z1, z2, swap ^ b);
- swap = b;
- modular_add(t1, x2, z2);
- modular_subtract(x2, x2, z2);
- modular_add(z2, x1, z1);
- modular_subtract(x1, x1, z1);
- modular_multiply(t1, t1, x1);
- modular_multiply(x2, x2, z2);
- modular_square(z2, z2);
- modular_square(x1, x1);
- modular_subtract(t2, z2, x1);
- modular_multiply_single(z1, t2, A24);
- modular_add(z1, z1, x1);
- modular_multiply(z1, z1, t2);
- modular_multiply(x1, x1, z2);
- modular_subtract(z2, t1, x2);
- modular_square(z2, z2);
- modular_multiply(z2, z2, u);
- modular_add(x2, x2, t1);
- modular_square(x2, x2);
- }
- conditional_swap(x1, x2, swap);
- conditional_swap(z1, z2, swap);
- // Retrieve affine representation
- modular_multiply_inverse(u, z1);
- modular_multiply(u, u, x1);
- // Encode state for export
- return export_state(u);
- }
- ErrorOr<ByteBuffer> X448::derive_premaster_key(ReadonlyBytes shared_point)
- {
- VERIFY(shared_point.size() == BYTES);
- ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
- return premaster_key;
- }
- }
|