The environment settings object is effectively the context a piece of
script is running under, for example, it contains the origin,
responsible document, realm, global object and event loop for the
current context. This effectively replaces ScriptExecutionContext, but
it cannot be removed in this commit as EventTarget still depends on it.
https://html.spec.whatwg.org/multipage/webappapis.html#environment-settings-object
This commit partially reverts "LibJS: Make accessing the current
function's arguments cheaper".
While the change passed all the currently passing test262 tests, it
seems to have _some_ flaw that silently breaks with some real-world
websites.
As the speedup with negligible at best, let's just revert it until we
can implement it more correctly.
Instead of going through an environment record, make arguments of the
currently executing function generate references via the argument index,
which can later be resolved directly through the ExecutionContext.
This patch introduces the "environment coordinate" concept, which
encodes the distance from a variable access to the binding it ends up
resolving to.
EnvironmentCoordinate has two fields:
- hops: The number of hops up the lexical environment chain we have
to make before getting to the resolved binding.
- index: The index of the resolved binding within its declarative
environment record.
Whenever a variable lookup resolves somewhere inside a declarative
environment, we now cache the coordinates and reuse them in subsequent
lookups. This is achieved via a coordinate cache in JS::Identifier.
Note that non-strict direct eval() breaks this optimization and so it
will not be performed if the resolved environment has been permanently
screwed by eval().
This makes variable access *significantly* faster. :^)
VM::resolve_binding() can now return a Reference that knows the exact
binding index if it's pointing into a DeclarativeEnvironment.
Reading/writing through the Reference will now use direct environment
access when possible.
Before this we used an ad-hoc combination of references and 'variables'
stored in a hashmap. This worked in most cases but is not spec like.
Additionally hoisting, dynamically naming functions and scope analysis
was not done properly.
This patch fixes all of that by:
- Implement BindingInitialization for destructuring assignment.
- Implementing a new ScopePusher which tracks the lexical and var
scoped declarations. This hoists functions to the top level if no
lexical declaration name overlaps. Furthermore we do checking of
redeclarations in the ScopePusher now requiring less checks all over
the place.
- Add methods for parsing the directives and statement lists instead
of having that code duplicated in multiple places. This allows
declarations to pushed to the appropriate scope more easily.
- Remove the non spec way of storing 'variables' in
DeclarativeEnvironment and make Reference follow the spec instead of
checking both the bindings and 'variables'.
- Remove all scoping related things from the Interpreter. And instead
use environments as specified by the spec. This also includes fixing
that NativeFunctions did not produce a valid FunctionEnvironment
which could cause issues with callbacks and eval. All
FunctionObjects now have a valid NewFunctionEnvironment
implementation.
- Remove execute_statements from Interpreter and instead use
ASTNode::execute everywhere this simplifies AST.cpp as you no longer
need to worry about which method to call.
- Make ScopeNodes setup their own environment. This uses four
different methods specified by the spec
{Block, Function, Eval, Global}DeclarationInstantiation with the
annexB extensions.
- Implement and use NamedEvaluation where specified.
Additionally there are fixes to things exposed by these changes to eval,
{for, for-in, for-of} loops and assignment.
Finally it also fixes some tests in test-js which where passing before
but not now that we have correct behavior :^).
Since we have the to_reference method on every expression class we must
somehow communicate it did not actually return a reference.
This (ab)uses the fact that property name is only invalid with the
default constructor and already has is_valid().
Our Reference class now has the same fields as the spec:
- Base (a non-nullish value, an environment record, or `unresolvable`)
- Referenced Name (the name of the binding)
- Strict (whether the reference originated in strict mode code)
- ThisValue (if non-empty, the reference represents a `super` keyword)
The main difference from before is that we now resolve the environment
record that a reference interacts with. Previously we simply resolved
to either "local variable" or "global variable".
The associated abstract operations are still largely non-conforming,
since we don't yet implement proper variable bindings. But this patch
should at least fix a handful of test262 cases. :^)
There's one minor regression: some TypeError message strings get
a little worse due to doing a RequireObjectCoercible earlier in the
evaluation of MemberExpression.
The parser doesn't always track lexical scopes correctly, so let's not
rely on that for direct argument loading.
This reverts the LoadArguments bytecode instruction as well. We can
bring these things back when the parser can reliably tell us that
a given Identifier is indeed a function argument.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This fixes an issue where `undefined.foo = "bar"` would throw a
ReferenceError instead of a TypeError as undefined was also used for
truly unresolvable references (e.g. `foo() = "bar"`). I also made the
various error messages here a bit nicer, just "primitive value" is not
very helpful.