This uses ICU for the Intl.NumberFormat `formatRange` and
`formatRangeToParts` prototypes.
Note: All of the changes to the test files in this patch are now aligned
with both Chrome and Safari.
This uses ICU for the Intl.NumberFormat `format` and `formatToParts`
prototypes. It does not yet port the range formatter prototypes.
Most of the new code in LibLocale/NumberFormat is simply mapping from
ECMA-402 types to ICU types. Beyond that, the only algorithmic change is
that we have to mutate the output from ICU for `formatToParts` to match
what is expected by ECMA-402. This is explained in NumberFormat.cpp in
`flatten_partitions`.
This lets us remove most data from our number format generator. All that
remains are numbering system digits and symbols, which are relied upon
still for other interfaces (e.g. Intl.DateTimeFormat). So they will be
removed in a future patch.
Note: All of the changes to the test files in this patch are now aligned
with both Chrome and Safari.
Note: We keep locale parsing and syntactic validation as-is. ECMA-402
places additional restrictions on locales above what is required by the
Unicode spec. ICU doesn't provide methods that let us easily check those
restrictions, whereas LibLocale does. Other browsers also implement
their own validators here.
This introduces a locale cache to re-use parsed locale data and various
related structures (not doing so has a non-negligible performance impact
on Intl tests).
The existing APIs for canonicalization and display names are pretty
intertwined, so they must both be adapted at once here. The results of
canonicalization are slightly different on some edge cases. But the
changed results are actually now aligned with Chrome and Safari.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
This patch adds two macros to declare per-type allocators:
- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)
When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.
The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.
It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)
There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.
Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
These functions all have a very common case that can be dealt with a
very simple inline check, often avoiding the need to call an out-of-line
function. This patch moves the common case to inline functions in a new
ValueInlines.h header (necessary due to header dependency issues..)
8% speed-up on the entire Kraken benchmark :^)
When formatting a currency style pattern with compact notation, we were
(trying to) doubly insert the currency symbol into the formatted string.
We would first look up the currency pattern in GetNumberFormatPattern
(for the en locale, this is "¤#,##0.00", which our generator transforms
to "{currency}{number}").
When we hit the "{number}" field, NumberFormat will do a second lookup
for the compact pattern to use for the number being formatted. By using
the currency compact patterns, we receive a second pattern that also has
the currency symbol (for the en locale, if formatting the number 1000,
this is "¤0K", which our generator transforms to
"{currency}{number}{compactIdentifier:0}". This second lookup is not
supposed to have currency symbols (or any other symbols), thus we hit a
VERIFY_NOT_REACHED().
Instead, we are meant to use the decimal compact pattern, and allow the
currency symbol to be handled by only the outer currency pattern.
These APIs only perform small allocations, and are only used by LibJS.
Callers which could only have failed from these APIs are also made to
be infallible here.
These APIs only perform small allocations, and are only used by LibJS.
Callers which could only have failed from these APIs are also made to
be infallible here.
This proposal has been merged into the main ECMA-402 spec. See:
https://github.com/tc39/ecma402/commit/4257160
Note this includes some editorial and normative changes made when the
proposal was merged into the main spec, but are not in the proposal spec
itself. In particular, the following AOs were changed:
PartitionNumberRangePattern (normative)
SetNumberFormatDigitOptions (editorial)
To add grouping to a number, we take a string such as "123456.123" and
break it into integer and fraction parts. Then we take the integer part
and break it into locale-specific sized groups to inject the locale's
group separator (e.g. a comma in en-US). We currently create new strings
for each of these groups. Instead, we can use the shared superstring
method to avoid all of that string copying.
First, this adds an overload of PrimitiveString::create for StringView.
This overload will throw an OOM completion if creating a String fails.
This is not only a bit more convenient, but it also ensures at compile
time that all PrimitiveString::create(string_view) invocations will be
handled as String and OOM-aware.
Next, this wraps all invocations to PrimitiveString::create(string_view)
with MUST_OR_THROW_OOM.
A small PrimitiveString::create(DeprecatedFlyString) overload also had
to be added to disambiguate between the StringView and DeprecatedString
overloads.
This is a normative change in the Intl.NumberFormat V3 spec. See:
https://github.com/tc39/proposal-intl-numberformat-v3/commit/08f599b
Note that this didn't seem to actually affect our implementation. The
Unicode spec states:
https://www.unicode.org/reports/tr35/tr35-53/tr35-numbers.html#Plural_Ranges
"If there is no value for a <start,end> pair, the default result is end"
Therefore, our implementation did not have the behavior noted by the
issue this normative change addressed:
const pr = new Intl.PluralRules("en-US");
pr.selectRange(1, 1); // Is "other", should be "one"
Our implementation already returned "one" here because there is no such
<start=one, end=one> value in the CLDR for en-US. Thus, we already
returned the end value of "one".
This is a normative change in the Intl.NumberFormat V3 spec. See:
https://github.com/tc39/proposal-intl-numberformat-v3/commit/23e69cf
This isn't particularly testable because every locale in the CLDR has a
non-empty "approximatelySign" field in cldr-numbers-modern. The issue
for this change seems to be considering the "miscPatterns/approximately"
field instead, which has different semantics. But as noted on the CLDR
issue https://unicode-org.atlassian.net/browse/CLDR-14918, the ICU uses
the "approximatelySign" field (as do our implementation).
It turns out return a ThrowCompletionOr<T const&> is flawed, as the GCC
expansion trick used with TRY will always make a copy. PrimitiveString
is luckily the only such use case.
This makes construction of Utf16String fallible in OOM conditions. The
immediate impact is that PrimitiveString must then be fallible as well,
as it may either transcode UTF-8 to UTF-16, or create a UTF-16 string
from ropes.
There are a couple of places where it is very non-trivial to propagate
the error further. A FIXME has been added to those locations.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)