ladybird/Userland/Libraries/LibJS/Runtime/Intl/NumberFormat.cpp
Linus Groh 57dc179b1f Everywhere: Rename to_{string => deprecated_string}() where applicable
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.

One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
2022-12-06 08:54:33 +01:00

1857 lines
78 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2021-2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Checked.h>
#include <AK/Utf8View.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/NumberFormat.h>
#include <LibJS/Runtime/Intl/NumberFormatFunction.h>
#include <LibJS/Runtime/Intl/PluralRules.h>
#include <LibUnicode/CurrencyCode.h>
#include <math.h>
#include <stdlib.h>
namespace JS::Intl {
NumberFormatBase::NumberFormatBase(Object& prototype)
: Object(prototype)
{
}
// 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects
NumberFormat::NumberFormat(Object& prototype)
: NumberFormatBase(prototype)
{
}
void NumberFormat::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
if (m_bound_format)
visitor.visit(m_bound_format);
}
void NumberFormat::set_style(StringView style)
{
if (style == "decimal"sv)
m_style = Style::Decimal;
else if (style == "percent"sv)
m_style = Style::Percent;
else if (style == "currency"sv)
m_style = Style::Currency;
else if (style == "unit"sv)
m_style = Style::Unit;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::style_string() const
{
switch (m_style) {
case Style::Decimal:
return "decimal"sv;
case Style::Percent:
return "percent"sv;
case Style::Currency:
return "currency"sv;
case Style::Unit:
return "unit"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_display(StringView currency_display)
{
m_resolved_currency_display.clear();
if (currency_display == "code"sv)
m_currency_display = CurrencyDisplay::Code;
else if (currency_display == "symbol"sv)
m_currency_display = CurrencyDisplay::Symbol;
else if (currency_display == "narrowSymbol"sv)
m_currency_display = CurrencyDisplay::NarrowSymbol;
else if (currency_display == "name"sv)
m_currency_display = CurrencyDisplay::Name;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::resolve_currency_display()
{
if (m_resolved_currency_display.has_value())
return *m_resolved_currency_display;
switch (currency_display()) {
case NumberFormat::CurrencyDisplay::Code:
m_resolved_currency_display = currency();
break;
case NumberFormat::CurrencyDisplay::Symbol:
m_resolved_currency_display = ::Locale::get_locale_short_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::NarrowSymbol:
m_resolved_currency_display = ::Locale::get_locale_narrow_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::Name:
m_resolved_currency_display = ::Locale::get_locale_numeric_currency_mapping(data_locale(), currency());
break;
default:
VERIFY_NOT_REACHED();
}
if (!m_resolved_currency_display.has_value())
m_resolved_currency_display = currency();
return *m_resolved_currency_display;
}
StringView NumberFormat::currency_display_string() const
{
VERIFY(m_currency_display.has_value());
switch (*m_currency_display) {
case CurrencyDisplay::Code:
return "code"sv;
case CurrencyDisplay::Symbol:
return "symbol"sv;
case CurrencyDisplay::NarrowSymbol:
return "narrowSymbol"sv;
case CurrencyDisplay::Name:
return "name"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_sign(StringView currency_sign)
{
if (currency_sign == "standard"sv)
m_currency_sign = CurrencySign::Standard;
else if (currency_sign == "accounting"sv)
m_currency_sign = CurrencySign::Accounting;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::currency_sign_string() const
{
VERIFY(m_currency_sign.has_value());
switch (*m_currency_sign) {
case CurrencySign::Standard:
return "standard"sv;
case CurrencySign::Accounting:
return "accounting"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormatBase::rounding_type_string() const
{
switch (m_rounding_type) {
case RoundingType::SignificantDigits:
return "significantDigits"sv;
case RoundingType::FractionDigits:
return "fractionDigits"sv;
case RoundingType::MorePrecision:
return "morePrecision"sv;
case RoundingType::LessPrecision:
return "lessPrecision"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormatBase::rounding_mode_string() const
{
switch (m_rounding_mode) {
case RoundingMode::Ceil:
return "ceil"sv;
case RoundingMode::Expand:
return "expand"sv;
case RoundingMode::Floor:
return "floor"sv;
case RoundingMode::HalfCeil:
return "halfCeil"sv;
case RoundingMode::HalfEven:
return "halfEven"sv;
case RoundingMode::HalfExpand:
return "halfExpand"sv;
case RoundingMode::HalfFloor:
return "halfFloor"sv;
case RoundingMode::HalfTrunc:
return "halfTrunc"sv;
case RoundingMode::Trunc:
return "trunc"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormatBase::set_rounding_mode(StringView rounding_mode)
{
if (rounding_mode == "ceil"sv)
m_rounding_mode = RoundingMode::Ceil;
else if (rounding_mode == "expand"sv)
m_rounding_mode = RoundingMode::Expand;
else if (rounding_mode == "floor"sv)
m_rounding_mode = RoundingMode::Floor;
else if (rounding_mode == "halfCeil"sv)
m_rounding_mode = RoundingMode::HalfCeil;
else if (rounding_mode == "halfEven"sv)
m_rounding_mode = RoundingMode::HalfEven;
else if (rounding_mode == "halfExpand"sv)
m_rounding_mode = RoundingMode::HalfExpand;
else if (rounding_mode == "halfFloor"sv)
m_rounding_mode = RoundingMode::HalfFloor;
else if (rounding_mode == "halfTrunc"sv)
m_rounding_mode = RoundingMode::HalfTrunc;
else if (rounding_mode == "trunc"sv)
m_rounding_mode = RoundingMode::Trunc;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormatBase::trailing_zero_display_string() const
{
switch (m_trailing_zero_display) {
case TrailingZeroDisplay::Auto:
return "auto"sv;
case TrailingZeroDisplay::StripIfInteger:
return "stripIfInteger"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormatBase::set_trailing_zero_display(StringView trailing_zero_display)
{
if (trailing_zero_display == "auto"sv)
m_trailing_zero_display = TrailingZeroDisplay::Auto;
else if (trailing_zero_display == "stripIfInteger"sv)
m_trailing_zero_display = TrailingZeroDisplay::StripIfInteger;
else
VERIFY_NOT_REACHED();
}
Value NumberFormat::use_grouping_to_value(VM& vm) const
{
switch (m_use_grouping) {
case UseGrouping::Always:
return js_string(vm, "always"sv);
case UseGrouping::Auto:
return js_string(vm, "auto"sv);
case UseGrouping::Min2:
return js_string(vm, "min2"sv);
case UseGrouping::False:
return Value(false);
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_use_grouping(StringOrBoolean const& use_grouping)
{
use_grouping.visit(
[this](StringView grouping) {
if (grouping == "always"sv)
m_use_grouping = UseGrouping::Always;
else if (grouping == "auto"sv)
m_use_grouping = UseGrouping::Auto;
else if (grouping == "min2"sv)
m_use_grouping = UseGrouping::Min2;
else
VERIFY_NOT_REACHED();
},
[this](bool grouping) {
VERIFY(!grouping);
m_use_grouping = UseGrouping::False;
});
}
void NumberFormat::set_notation(StringView notation)
{
if (notation == "standard"sv)
m_notation = Notation::Standard;
else if (notation == "scientific"sv)
m_notation = Notation::Scientific;
else if (notation == "engineering"sv)
m_notation = Notation::Engineering;
else if (notation == "compact"sv)
m_notation = Notation::Compact;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::notation_string() const
{
switch (m_notation) {
case Notation::Standard:
return "standard"sv;
case Notation::Scientific:
return "scientific"sv;
case Notation::Engineering:
return "engineering"sv;
case Notation::Compact:
return "compact"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_compact_display(StringView compact_display)
{
if (compact_display == "short"sv)
m_compact_display = CompactDisplay::Short;
else if (compact_display == "long"sv)
m_compact_display = CompactDisplay::Long;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::compact_display_string() const
{
VERIFY(m_compact_display.has_value());
switch (*m_compact_display) {
case CompactDisplay::Short:
return "short"sv;
case CompactDisplay::Long:
return "long"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_sign_display(StringView sign_display)
{
if (sign_display == "auto"sv)
m_sign_display = SignDisplay::Auto;
else if (sign_display == "never"sv)
m_sign_display = SignDisplay::Never;
else if (sign_display == "always"sv)
m_sign_display = SignDisplay::Always;
else if (sign_display == "exceptZero"sv)
m_sign_display = SignDisplay::ExceptZero;
else if (sign_display == "negative"sv)
m_sign_display = SignDisplay::Negative;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::sign_display_string() const
{
switch (m_sign_display) {
case SignDisplay::Auto:
return "auto"sv;
case SignDisplay::Never:
return "never"sv;
case SignDisplay::Always:
return "always"sv;
case SignDisplay::ExceptZero:
return "exceptZero"sv;
case SignDisplay::Negative:
return "negative"sv;
default:
VERIFY_NOT_REACHED();
}
}
// 15.5.1 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits
int currency_digits(StringView currency)
{
// 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor
// unit value corresponding to the currency from the list; otherwise, return 2.
if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value())
return currency_code->minor_unit.value_or(2);
return 2;
}
// 15.5.3 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring
// 1.1.5 FormatNumericToString ( intlObject, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatnumberstring
FormatResult format_numeric_to_string(NumberFormatBase const& intl_object, MathematicalValue number)
{
bool is_negative = false;
// 1. If x is negative-zero, then
if (number.is_negative_zero()) {
// a. Let isNegative be true.
is_negative = true;
// b. Let x be the mathematical value 0.
number = MathematicalValue(0.0);
}
// 2. Assert: x is a mathematical value.
VERIFY(number.is_mathematical_value());
// 3. If x < 0, let isNegative be true; else let isNegative be false.
// FIXME: Spec issue: this step would override step 1a, see https://github.com/tc39/proposal-intl-numberformat-v3/issues/67
if (number.is_negative()) {
is_negative = true;
// 4. If isNegative, then
// a. Let x be -x.
number.negate();
}
// 5. Let unsignedRoundingMode be GetUnsignedRoundingMode(intlObject.[[RoundingMode]], isNegative).
// FIXME: Spec issue: Intl.PluralRules does not have [[RoundingMode]], see https://github.com/tc39/proposal-intl-numberformat-v3/issues/103
Optional<NumberFormat::UnsignedRoundingMode> unsigned_rounding_mode;
if (intl_object.rounding_mode() != NumberFormat::RoundingMode::Invalid)
unsigned_rounding_mode = get_unsigned_rounding_mode(intl_object.rounding_mode(), is_negative);
RawFormatResult result {};
switch (intl_object.rounding_type()) {
// 6. If intlObject.[[RoundingType]] is significantDigits, then
case NumberFormatBase::RoundingType::SignificantDigits:
// a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]], unsignedRoundingMode).
result = to_raw_precision(number, intl_object.min_significant_digits(), intl_object.max_significant_digits(), unsigned_rounding_mode);
break;
// 7. Else if intlObject.[[RoundingType]] is fractionDigits, then
case NumberFormatBase::RoundingType::FractionDigits:
// a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]], intlObject.[[RoundingIncrement]], unsignedRoundingMode).
result = to_raw_fixed(number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits(), intl_object.rounding_increment(), unsigned_rounding_mode);
break;
// 8. Else,
case NumberFormatBase::RoundingType::MorePrecision:
case NumberFormatBase::RoundingType::LessPrecision: {
// a. Let sResult be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]], unsignedRoundingMode).
auto significant_result = to_raw_precision(number, intl_object.min_significant_digits(), intl_object.max_significant_digits(), unsigned_rounding_mode);
// b. Let fResult be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]], intlObject.[[RoundingIncrement]], unsignedRoundingMode).
auto fraction_result = to_raw_fixed(number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits(), intl_object.rounding_increment(), unsigned_rounding_mode);
// c. If intlObj.[[RoundingType]] is morePrecision, then
if (intl_object.rounding_type() == NumberFormatBase::RoundingType::MorePrecision) {
// i. If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
if (significant_result.rounding_magnitude <= fraction_result.rounding_magnitude) {
// 1. Let result be sResult.
result = move(significant_result);
}
// ii. Else,
else {
// 2. Let result be fResult.
result = move(fraction_result);
}
}
// d. Else,
else {
// i. Assert: intlObj.[[RoundingType]] is lessPrecision.
VERIFY(intl_object.rounding_type() == NumberFormatBase::RoundingType::LessPrecision);
// ii. If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
if (significant_result.rounding_magnitude <= fraction_result.rounding_magnitude) {
// 1. Let result be fResult.
result = move(fraction_result);
}
// iii. Else,
else {
// 1. Let result be sResult.
result = move(significant_result);
}
}
break;
}
default:
VERIFY_NOT_REACHED();
}
// 9. Let x be result.[[RoundedNumber]].
number = move(result.rounded_number);
// 10. Let string be result.[[FormattedString]].
auto string = move(result.formatted_string);
// 11. If intlObject.[[TrailingZeroDisplay]] is "stripIfInteger" and x modulo 1 = 0, then
if ((intl_object.trailing_zero_display() == NumberFormat::TrailingZeroDisplay::StripIfInteger) && number.modulo_is_zero(1)) {
// a. If string contains ".", then
if (auto index = string.find('.'); index.has_value()) {
// i. Set string to the substring of string from index 0 to the index of ".".
string = string.substring(0, *index);
}
}
// 12. Let int be result.[[IntegerDigitsCount]].
int digits = result.digits;
// 13. Let minInteger be intlObject.[[MinimumIntegerDigits]].
int min_integer = intl_object.min_integer_digits();
// 14. If int < minInteger, then
if (digits < min_integer) {
// a. Let forwardZeros be the String consisting of minIntegerint occurrences of the character "0".
auto forward_zeros = DeprecatedString::repeated('0', min_integer - digits);
// b. Set string to the string-concatenation of forwardZeros and string.
string = DeprecatedString::formatted("{}{}", forward_zeros, string);
}
// 15. If isNegative and x is 0, then
if (is_negative && number.is_zero()) {
// a. Let x be -0.
number = MathematicalValue { MathematicalValue::Symbol::NegativeZero };
}
// 16. Else if isNegative, then
else if (is_negative) {
// b. Let x be -x.
number.negate();
}
// 17. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }.
return { move(string), move(number) };
}
// 15.5.4 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern
// 1.1.6 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnumberpattern
Vector<PatternPartition> partition_number_pattern(VM& vm, NumberFormat& number_format, MathematicalValue number)
{
// 1. Let exponent be 0.
int exponent = 0;
DeprecatedString formatted_string;
// 2. If x is not-a-number, then
if (number.is_nan()) {
// a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
formatted_string = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::NaN).value_or("NaN"sv);
}
// 3. Else if x is positive-infinity, then
else if (number.is_positive_infinity()) {
// a. Let n be an ILD String value indicating positive infinity.
formatted_string = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 4. Else if x is negative-infinity, then
else if (number.is_negative_infinity()) {
// a. Let n be an ILD String value indicating negative infinity.
// NOTE: The CLDR does not contain unique strings for negative infinity. The negative sign will
// be inserted by the pattern returned from GetNumberFormatPattern.
formatted_string = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 5. Else,
else {
// a. If x is not negative-zero,
if (!number.is_negative_zero()) {
// i. Assert: x is a mathematical value.
VERIFY(number.is_mathematical_value());
// ii. If numberFormat.[[Style]] is "percent", let x be 100 × x.
if (number_format.style() == NumberFormat::Style::Percent)
number = number.multiplied_by(100);
// iii. Let exponent be ComputeExponent(numberFormat, x).
exponent = compute_exponent(number_format, number);
// iv. Let x be x × 10^-exponent.
number = number.multiplied_by_power(-exponent);
}
// b. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(number_format, move(number));
// c. Let n be formatNumberResult.[[FormattedString]].
formatted_string = move(format_number_result.formatted_string);
// d. Let x be formatNumberResult.[[RoundedNumber]].
number = move(format_number_result.rounded_number);
}
::Locale::NumberFormat found_pattern {};
// 6. Let pattern be GetNumberFormatPattern(numberFormat, x).
auto pattern = get_number_format_pattern(vm, number_format, number, found_pattern);
if (!pattern.has_value())
return {};
// 7. Let result be a new empty List.
Vector<PatternPartition> result;
// 8. Let patternParts be PartitionPattern(pattern).
auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); });
// 9. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// b. If p is "literal", then
if (part == "literal"sv) {
// i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// c. Else if p is equal to "number", then
else if (part == "number"sv) {
// i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent).
auto notation_sub_parts = partition_notation_sub_pattern(number_format, number, formatted_string, exponent);
// ii. Append all elements of notationSubParts to result.
result.extend(move(notation_sub_parts));
}
// d. Else if p is equal to "plusSign", then
else if (part == "plusSign"sv) {
// i. Let plusSignSymbol be the ILND String representing the plus sign.
auto plus_sign_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::PlusSign).value_or("+"sv);
// ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.
result.append({ "plusSign"sv, plus_sign_symbol });
}
// e. Else if p is equal to "minusSign", then
else if (part == "minusSign"sv) {
// i. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::MinusSign).value_or("-"sv);
// ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "minusSign"sv, minus_sign_symbol });
}
// f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then
else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) {
// i. Let percentSignSymbol be the ILND String representing the percent sign.
auto percent_sign_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::PercentSign).value_or("%"sv);
// ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.
result.append({ "percentSign"sv, percent_sign_symbol });
}
// g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then
// h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then
else if ((part.starts_with("unitIdentifier:"sv)) && (number_format.style() == NumberFormat::Style::Unit)) {
// Note: Our implementation combines "unitPrefix" and "unitSuffix" into one field, "unitIdentifier".
auto identifier_index = part.substring_view("unitIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// i. Let unit be numberFormat.[[Unit]].
// ii. Let unitDisplay be numberFormat.[[UnitDisplay]].
// iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms.
auto unit_identifier = found_pattern.identifiers[*identifier_index];
// iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result.
result.append({ "unit"sv, unit_identifier });
}
// i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then
// j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then
// k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then
//
// Note: Our implementation manipulates the format string to inject/remove spacing around the
// currency code during GetNumberFormatPattern so that we do not have to do currency
// display / plurality lookups more than once.
else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) {
result.append({ "currency"sv, number_format.resolve_currency_display() });
}
// l. Else,
else {
// i. Let unknown be an ILND String based on x and p.
// ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
// 10. Return result.
return result;
}
static Vector<StringView> separate_integer_into_groups(::Locale::NumberGroupings const& grouping_sizes, StringView integer, NumberFormat::UseGrouping use_grouping)
{
Utf8View utf8_integer { integer };
if (utf8_integer.length() <= grouping_sizes.primary_grouping_size)
return { integer };
size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size;
switch (use_grouping) {
case NumberFormat::UseGrouping::Min2:
if (utf8_integer.length() < 5)
return { integer };
break;
case NumberFormat::UseGrouping::Auto:
if (index < grouping_sizes.minimum_grouping_digits)
return { integer };
break;
case NumberFormat::UseGrouping::Always:
break;
default:
VERIFY_NOT_REACHED();
}
Vector<StringView> groups;
auto add_group = [&](size_t index, size_t length) {
groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string());
};
add_group(index, grouping_sizes.primary_grouping_size);
while (index > grouping_sizes.secondary_grouping_size) {
index -= grouping_sizes.secondary_grouping_size;
add_group(index, grouping_sizes.secondary_grouping_size);
}
if (index > 0)
add_group(0, index);
return groups;
}
// 15.5.5 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern
// 1.1.7 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnotationsubpattern
Vector<PatternPartition> partition_notation_sub_pattern(NumberFormat& number_format, MathematicalValue const& number, DeprecatedString formatted_string, int exponent)
{
// 1. Let result be a new empty List.
Vector<PatternPartition> result;
auto grouping_sizes = ::Locale::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system());
if (!grouping_sizes.has_value())
return {};
// 2. If x is NaN, then
if (number.is_nan()) {
// a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.
result.append({ "nan"sv, move(formatted_string) });
}
// 3. Else if x is a non-finite Number, then
else if (number.is_positive_infinity() || number.is_negative_infinity()) {
// a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.
result.append({ "infinity"sv, move(formatted_string) });
}
// 4. Else,
else {
// a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent).
auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent);
if (!notation_sub_pattern.has_value())
return {};
// b. Let patternParts be PartitionPattern(notationSubPattern).
auto pattern_parts = partition_pattern(*notation_sub_pattern);
// c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// i. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// ii. If p is "literal", then
if (part == "literal"sv) {
// 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// iii. Else if p is equal to "number", then
else if (part == "number"sv) {
// 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 12 below, then
// a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 12.
// b. Replace each digit in n with the value of digits[digit].
// 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system.
formatted_string = ::Locale::replace_digits_for_number_system(number_format.numbering_system(), formatted_string);
// 3. Let decimalSepIndex be StringIndexOf(n, ".", 0).
auto decimal_sep_index = formatted_string.find('.');
StringView integer;
Optional<StringView> fraction;
// 4. If decimalSepIndex > 0, then
if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) {
// a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
integer = formatted_string.substring_view(0, *decimal_sep_index);
// b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.
fraction = formatted_string.substring_view(*decimal_sep_index + 1);
}
// 5. Else,
else {
// a. Let integer be n.
integer = formatted_string;
// b. Let fraction be undefined.
}
// 6. If the numberFormat.[[UseGrouping]] is false, then
if (number_format.use_grouping() == NumberFormat::UseGrouping::False) {
// a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.
result.append({ "integer"sv, integer });
}
// 7. Else,
else {
// a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator.
auto group_sep_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::Group).value_or(","sv);
// b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer, which may depend on the value of numberFormat.[[UseGrouping]].
auto groups = separate_integer_into_groups(*grouping_sizes, integer, number_format.use_grouping());
// c. Assert: The number of elements in groups List is greater than 0.
VERIFY(!groups.is_empty());
// d. Repeat, while groups List is not empty,
while (!groups.is_empty()) {
// i. Remove the first element from groups and let integerGroup be the value of that element.
auto integer_group = groups.take_first();
// ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result.
result.append({ "integer"sv, integer_group });
// iii. If groups List is not empty, then
if (!groups.is_empty()) {
// i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result.
result.append({ "group"sv, group_sep_symbol });
}
}
}
// 8. If fraction is not undefined, then
if (fraction.has_value()) {
// a. Let decimalSepSymbol be the ILND String representing the decimal separator.
auto decimal_sep_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::Decimal).value_or("."sv);
// b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result.
result.append({ "decimal"sv, decimal_sep_symbol });
// c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
result.append({ "fraction"sv, fraction.release_value() });
}
}
// iv. Else if p is equal to "compactSymbol", then
// v. Else if p is equal to "compactName", then
else if (part.starts_with("compactIdentifier:"sv)) {
// Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier".
auto identifier_index = part.substring_view("compactIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder.
auto compact_identifier = number_format.compact_format().identifiers[*identifier_index];
// 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result.
result.append({ "compact"sv, compact_identifier });
}
// vi. Else if p is equal to "scientificSeparator", then
else if (part == "scientificSeparator"sv) {
// 1. Let scientificSeparator be the ILND String representing the exponent separator.
auto scientific_separator = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::Exponential).value_or("E"sv);
// 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result.
result.append({ "exponentSeparator"sv, scientific_separator });
}
// vii. Else if p is equal to "scientificExponent", then
else if (part == "scientificExponent"sv) {
// 1. If exponent < 0, then
if (exponent < 0) {
// a. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::MinusSign).value_or("-"sv);
// b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "exponentMinusSign"sv, minus_sign_symbol });
// c. Let exponent be -exponent.
exponent *= -1;
}
// 2. Let exponentResult be ToRawFixed(exponent, 0, 0, 1, undefined).
auto exponent_value = MathematicalValue { static_cast<double>(exponent) };
auto exponent_result = to_raw_fixed(exponent_value, 0, 0, 1, {});
// FIXME: The spec does not say to do this, but all of major engines perform this replacement.
// Without this, formatting with non-Latin numbering systems will produce non-localized results.
exponent_result.formatted_string = ::Locale::replace_digits_for_number_system(number_format.numbering_system(), exponent_result.formatted_string);
// 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result.
result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) });
}
// viii. Else,
else {
// 1. Let unknown be an ILND String based on x and p.
// 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
}
// 5. Return result.
return result;
}
// 15.5.6 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber
DeprecatedString format_numeric(VM& vm, NumberFormat& number_format, MathematicalValue number)
{
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(vm, number_format, move(number));
// 2. Let result be the empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 15.5.7 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts
Array* format_numeric_to_parts(VM& vm, NumberFormat& number_format, MathematicalValue number)
{
auto& realm = *vm.current_realm();
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(vm, number_format, move(number));
// 2. Let result be ! ArrayCreate(0).
auto* result = MUST(Array::create(realm, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(realm, realm.intrinsics().object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// e. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
static DeprecatedString cut_trailing_zeroes(StringView string, int cut)
{
// These steps are exactly the same between ToRawPrecision and ToRawFixed.
// Repeat, while cut > 0 and the last character of m is "0",
while ((cut > 0) && string.ends_with('0')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
// Decrease cut by 1.
--cut;
}
// If the last character of m is ".", then
if (string.ends_with('.')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
}
return string.to_deprecated_string();
}
enum class PreferredResult {
LessThanNumber,
GreaterThanNumber,
};
// ToRawPrecisionFn, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#eqn-ToRawPrecisionFn
static auto to_raw_precision_function(MathematicalValue const& number, int precision, PreferredResult mode)
{
struct {
MathematicalValue number;
int exponent { 0 };
MathematicalValue rounded;
} result {};
result.exponent = number.logarithmic_floor();
if (number.is_number()) {
result.number = number.divided_by_power(result.exponent - precision + 1);
switch (mode) {
case PreferredResult::LessThanNumber:
result.number = MathematicalValue { floor(result.number.as_number()) };
break;
case PreferredResult::GreaterThanNumber:
result.number = MathematicalValue { ceil(result.number.as_number()) };
break;
}
} else {
// NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
// factor of 10. This lets us inspect the ones digit and then round up if needed.
result.number = number.divided_by_power(result.exponent - precision);
// FIXME: Can we do this without string conversion?
auto digits = result.number.to_deprecated_string();
auto digit = digits.substring_view(digits.length() - 1);
result.number = result.number.divided_by(10);
if (mode == PreferredResult::GreaterThanNumber && digit.to_uint().value() != 0)
result.number = result.number.plus(1);
}
result.rounded = result.number.multiplied_by_power(result.exponent - precision + 1);
return result;
}
// 15.5.8 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision
// 1.1.10 ToRawPrecision ( x, minPrecision, maxPrecision, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-torawprecision
RawFormatResult to_raw_precision(MathematicalValue const& number, int min_precision, int max_precision, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
{
RawFormatResult result {};
// 1. Let p be maxPrecision.
int precision = max_precision;
int exponent = 0;
// 2. If x = 0, then
if (number.is_zero()) {
// a. Let m be the String consisting of p occurrences of the character "0".
result.formatted_string = DeprecatedString::repeated('0', precision);
// b. Let e be 0.
exponent = 0;
// c. Let xFinal be 0.
result.rounded_number = MathematicalValue { 0.0 };
}
// 3. Else,
else {
// a. Let n1 and e1 each be an integer and r1 a mathematical value, with r1 = ToRawPrecisionFn(n1, e1, p), such that r1 ≤ x and r1 is maximized.
auto [number1, exponent1, rounded1] = to_raw_precision_function(number, precision, PreferredResult::LessThanNumber);
// b. Let n2 and e2 each be an integer and r2 a mathematical value, with r2 = ToRawPrecisionFn(n2, e2, p), such that r2 ≥ x and r2 is minimized.
auto [number2, exponent2, rounded2] = to_raw_precision_function(number, precision, PreferredResult::GreaterThanNumber);
// c. Let r be ApplyUnsignedRoundingMode(x, r1, r2, unsignedRoundingMode).
auto rounded = apply_unsigned_rounding_mode(number, rounded1, rounded2, unsigned_rounding_mode);
MathematicalValue n;
// d. If r is r1, then
if (rounded == RoundingDecision::LowerValue) {
// i. Let n be n1.
n = move(number1);
// ii. Let e be e1.
exponent = exponent1;
// iii. Let xFinal be r1.
result.rounded_number = move(rounded1);
}
// e. Else,
else {
// i. Let n be n2.
n = move(number2);
// ii. Let e be e2.
exponent = exponent2;
// iii. Let xFinal be r2.
result.rounded_number = move(rounded2);
}
// f. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = n.to_deprecated_string();
}
// 4. If e ≥ p1, then
if (exponent >= (precision - 1)) {
// a. Let m be the string-concatenation of m and ep+1 occurrences of the character "0".
result.formatted_string = DeprecatedString::formatted(
"{}{}",
result.formatted_string,
DeprecatedString::repeated('0', exponent - precision + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 5. Else if e ≥ 0, then
else if (exponent >= 0) {
// a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p(e+1) characters of m.
result.formatted_string = DeprecatedString::formatted(
"{}.{}",
result.formatted_string.substring_view(0, exponent + 1),
result.formatted_string.substring_view(exponent + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 6. Else,
else {
// a. Assert: e < 0.
// b. Let m be the string-concatenation of "0.", (e+1) occurrences of the character "0", and m.
result.formatted_string = DeprecatedString::formatted(
"0.{}{}",
DeprecatedString::repeated('0', -1 * (exponent + 1)),
result.formatted_string);
// c. Let int be 1.
result.digits = 1;
}
// 7. If m contains the character ".", and maxPrecision > minPrecision, then
if (result.formatted_string.contains('.') && (max_precision > min_precision)) {
// a. Let cut be maxPrecision minPrecision.
int cut = max_precision - min_precision;
// Steps 8b-8c are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
}
// 8. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int, [[RoundingMagnitude]]: ep+1 }.
result.rounding_magnitude = exponent - precision + 1;
return result;
}
// ToRawFixedFn, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#eqn-ToRawFixedFn
static auto to_raw_fixed_function(MathematicalValue const& number, int fraction, int rounding_increment, PreferredResult mode)
{
struct {
MathematicalValue number;
MathematicalValue rounded;
} result {};
if (number.is_number()) {
result.number = number.multiplied_by_power(fraction);
switch (mode) {
case PreferredResult::LessThanNumber:
result.number = MathematicalValue { floor(result.number.as_number()) };
break;
case PreferredResult::GreaterThanNumber:
result.number = MathematicalValue { ceil(result.number.as_number()) };
break;
}
} else {
// NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
// factor of 10. This lets us inspect the ones digit and then round up if needed.
result.number = number.multiplied_by_power(fraction - 1);
// FIXME: Can we do this without string conversion?
auto digits = result.number.to_deprecated_string();
auto digit = digits.substring_view(digits.length() - 1);
result.number = result.number.multiplied_by(10);
if (mode == PreferredResult::GreaterThanNumber && digit.to_uint().value() != 0)
result.number = result.number.plus(1);
}
while (!result.number.modulo_is_zero(rounding_increment)) {
switch (mode) {
case PreferredResult::LessThanNumber:
result.number = result.number.minus(1);
break;
case PreferredResult::GreaterThanNumber:
result.number = result.number.plus(1);
break;
}
}
result.rounded = result.number.divided_by_power(fraction);
return result;
}
// 15.5.9 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed
// 1.1.11 ToRawFixed ( x, minFraction, maxFraction, roundingIncrement, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-torawfixed
RawFormatResult to_raw_fixed(MathematicalValue const& number, int min_fraction, int max_fraction, int rounding_increment, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
{
RawFormatResult result {};
// 1. Let f be maxFraction.
int fraction = max_fraction;
// 2. Let n1 be an integer and r1 a mathematical value, with r1 = ToRawFixedFn(n1, f), such that n1 modulo roundingIncrement = 0, r1 ≤ x, and r1 is maximized.
auto [number1, rounded1] = to_raw_fixed_function(number, fraction, rounding_increment, PreferredResult::LessThanNumber);
// 3. Let n2 be an integer and r2 a mathematical value, with r2 = ToRawFixedFn(n2, f), such that n2 modulo roundingIncrement = 0, r2 ≥ x, and r2 is minimized.
auto [number2, rounded2] = to_raw_fixed_function(number, fraction, rounding_increment, PreferredResult::GreaterThanNumber);
// 4. Let r be ApplyUnsignedRoundingMode(x, r1, r2, unsignedRoundingMode).
auto rounded = apply_unsigned_rounding_mode(number, rounded1, rounded2, unsigned_rounding_mode);
MathematicalValue n;
// 5. If r is r1, then
if (rounded == RoundingDecision::LowerValue) {
// a. Let n be n1.
n = move(number1);
// b. Let xFinal be r1.
result.rounded_number = move(rounded1);
}
// 6. Else,
else {
// a. Let n be n2.
n = move(number2);
// b. Let xFinal be r2.
result.rounded_number = move(rounded2);
}
// 7. If n = 0, let m be "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = n.is_zero() ? DeprecatedString("0"sv) : n.to_deprecated_string();
// 8. If f ≠ 0, then
if (fraction != 0) {
// a. Let k be the number of characters in m.
auto decimals = result.formatted_string.length();
// b. If k ≤ f, then
if (decimals <= static_cast<size_t>(fraction)) {
// i. Let z be the String value consisting of f+1k occurrences of the character "0".
auto zeroes = DeprecatedString::repeated('0', fraction + 1 - decimals);
// ii. Let m be the string-concatenation of z and m.
result.formatted_string = DeprecatedString::formatted("{}{}", zeroes, result.formatted_string);
// iii. Let k be f+1.
decimals = fraction + 1;
}
// c. Let a be the first kf characters of m, and let b be the remaining f characters of m.
auto a = result.formatted_string.substring_view(0, decimals - fraction);
auto b = result.formatted_string.substring_view(decimals - fraction, fraction);
// d. Let m be the string-concatenation of a, ".", and b.
result.formatted_string = DeprecatedString::formatted("{}.{}", a, b);
// e. Let int be the number of characters in a.
result.digits = a.length();
}
// 9. Else, let int be the number of characters in m.
else {
result.digits = result.formatted_string.length();
}
// 10. Let cut be maxFraction minFraction.
int cut = max_fraction - min_fraction;
// Steps 11-12 are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
// 13. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int, [[RoundingMagnitude]]: f }.
result.rounding_magnitude = -fraction;
return result;
}
// 15.5.11 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern
// 1.1.14 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-getnumberformatpattern
Optional<Variant<StringView, DeprecatedString>> get_number_format_pattern(VM& vm, NumberFormat& number_format, MathematicalValue const& number, ::Locale::NumberFormat& found_pattern)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let patterns be dataLocaleData.[[patterns]].
// 5. Assert: patterns is a Record (see 15.3.3).
Optional<::Locale::NumberFormat> patterns;
// 6. Let style be numberFormat.[[Style]].
switch (number_format.style()) {
// 7. If style is "percent", then
case NumberFormat::Style::Percent:
// a. Let patterns be patterns.[[percent]].
patterns = ::Locale::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), ::Locale::StandardNumberFormatType::Percent);
break;
// 8. Else if style is "unit", then
case NumberFormat::Style::Unit: {
// a. Let unit be numberFormat.[[Unit]].
// b. Let unitDisplay be numberFormat.[[UnitDisplay]].
// c. Let patterns be patterns.[[unit]].
// d. If patterns doesn't have a field [[<unit>]], then
// i. Let unit be "fallback".
// e. Let patterns be patterns.[[<unit>]].
// f. Let patterns be patterns.[[<unitDisplay>]].
auto formats = ::Locale::get_unit_formats(number_format.data_locale(), number_format.unit(), number_format.unit_display());
auto plurality = resolve_plural(number_format, ::Locale::PluralForm::Cardinal, number.to_value(vm));
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end())
patterns = move(*it);
break;
}
// 9. Else if style is "currency", then
case NumberFormat::Style::Currency:
// a. Let currency be numberFormat.[[Currency]].
// b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]].
// c. Let currencySign be numberFormat.[[CurrencySign]].
// d. Let patterns be patterns.[[currency]].
// e. If patterns doesn't have a field [[<currency>]], then
// i. Let currency be "fallback".
// f. Let patterns be patterns.[[<currency>]].
// g. Let patterns be patterns.[[<currencyDisplay>]].
// h. Let patterns be patterns.[[<currencySign>]].
// Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]].
if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) {
auto formats = ::Locale::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), ::Locale::CompactNumberFormatType::CurrencyUnit);
auto plurality = resolve_plural(number_format, ::Locale::PluralForm::Cardinal, number.to_value(vm));
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end()) {
patterns = move(*it);
break;
}
}
switch (number_format.currency_sign()) {
case NumberFormat::CurrencySign::Standard:
patterns = ::Locale::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), ::Locale::StandardNumberFormatType::Currency);
break;
case NumberFormat::CurrencySign::Accounting:
patterns = ::Locale::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), ::Locale::StandardNumberFormatType::Accounting);
break;
}
break;
// 10. Else,
case NumberFormat::Style::Decimal:
// a. Assert: style is "decimal".
// b. Let patterns be patterns.[[decimal]].
patterns = ::Locale::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), ::Locale::StandardNumberFormatType::Decimal);
break;
default:
VERIFY_NOT_REACHED();
}
if (!patterns.has_value())
return {};
StringView pattern;
// 11. Let signDisplay be numberFormat.[[SignDisplay]].
switch (number_format.sign_display()) {
// 12. If signDisplay is "never", then
case NumberFormat::SignDisplay::Never:
// a. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
break;
// 13. Else if signDisplay is "auto", then
case NumberFormat::SignDisplay::Auto:
// a. If x is 0 or x > 0 or x is NaN, then
if (number.is_zero() || number.is_positive() || number.is_nan()) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 14. Else if signDisplay is "always", then
case NumberFormat::SignDisplay::Always:
// a. If x is 0 or x > 0 or x is NaN, then
if (number.is_zero() || number.is_positive() || number.is_nan()) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 15. Else if signDisplay is "exceptZero", then
case NumberFormat::SignDisplay::ExceptZero:
// a. If x is 0 or x is -0 or x is NaN, then
if (number.is_zero() || number.is_negative_zero() || number.is_nan()) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// b. Else if x > 0, then
else if (number.is_positive()) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// c. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 16. Else,
case NumberFormat::SignDisplay::Negative:
// a. Assert: signDisplay is "negative".
// b. If x is 0 or x is -0 or x > 0 or x is NaN, then
if (number.is_zero() || number.is_negative_zero() || number.is_positive() || number.is_nan()) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// c. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
default:
VERIFY_NOT_REACHED();
}
found_pattern = patterns.release_value();
// Handling of steps 9b/9g: Depending on the currency display and the format pattern found above,
// we might need to mutate the format pattern to inject a space between the currency display and
// the currency number.
if (number_format.style() == NumberFormat::Style::Currency) {
auto modified_pattern = ::Locale::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern);
if (modified_pattern.has_value())
return modified_pattern.release_value();
}
// 16. Return pattern.
return pattern;
}
// 15.5.12 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern
Optional<StringView> get_notation_sub_pattern(NumberFormat& number_format, int exponent)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]].
// 5. Assert: notationSubPatterns is a Record (see 15.3.3).
// 6. Let notation be numberFormat.[[Notation]].
auto notation = number_format.notation();
// 7. If notation is "scientific" or notation is "engineering", then
if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) {
// a. Return notationSubPatterns.[[scientific]].
auto notation_sub_patterns = ::Locale::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), ::Locale::StandardNumberFormatType::Scientific);
if (!notation_sub_patterns.has_value())
return {};
return notation_sub_patterns->zero_format;
}
// 8. Else if exponent is not 0, then
else if (exponent != 0) {
// a. Assert: notation is "compact".
VERIFY(notation == NumberFormat::Notation::Compact);
// b. Let compactDisplay be numberFormat.[[CompactDisplay]].
// c. Let compactPatterns be notationSubPatterns.[[compact]].[[<compactDisplay>]].
// d. Return compactPatterns.[[<exponent>]].
if (number_format.has_compact_format())
return number_format.compact_format().zero_format;
}
// 9. Else,
// a. Return "{number}".
return "{number}"sv;
}
// 15.5.13 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent
int compute_exponent(NumberFormat& number_format, MathematicalValue number)
{
// 1. If x = 0, then
if (number.is_zero()) {
// a. Return 0.
return 0;
}
// 2. If x < 0, then
if (number.is_negative()) {
// a. Let x = -x.
number.negate();
}
// 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer.
int magnitude = number.logarithmic_floor();
// 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude).
int exponent = compute_exponent_for_magnitude(number_format, magnitude);
// 5. Let x be x × 10^(-exponent).
number = number.multiplied_by_power(-exponent);
// 6. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(number_format, move(number));
// 7. If formatNumberResult.[[RoundedNumber]] = 0, then
if (format_number_result.rounded_number.is_zero()) {
// a. Return exponent.
return exponent;
}
// 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer.
int new_magnitude = format_number_result.rounded_number.logarithmic_floor();
// 9. If newMagnitude is magnitude exponent, then
if (new_magnitude == magnitude - exponent) {
// a. Return exponent.
return exponent;
}
// 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1).
return compute_exponent_for_magnitude(number_format, magnitude + 1);
}
// 15.5.14 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude
int compute_exponent_for_magnitude(NumberFormat& number_format, int magnitude)
{
// 1. Let notation be numberFormat.[[Notation]].
switch (number_format.notation()) {
// 2. If notation is "standard", then
case NumberFormat::Notation::Standard:
// a. Return 0.
return 0;
// 3. Else if notation is "scientific", then
case NumberFormat::Notation::Scientific:
// a. Return magnitude.
return magnitude;
// 4. Else if notation is "engineering", then
case NumberFormat::Notation::Engineering: {
// a. Let thousands be the greatest integer that is not greater than magnitude / 3.
double thousands = floor(static_cast<double>(magnitude) / 3.0);
// b. Return thousands × 3.
return static_cast<int>(thousands) * 3;
}
// 5. Else,
case NumberFormat::Notation::Compact: {
// a. Assert: notation is "compact".
VERIFY(number_format.has_compact_display());
// b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale.
// c. Return exponent.
Vector<::Locale::NumberFormat> format_rules;
if (number_format.style() == NumberFormat::Style::Currency)
format_rules = ::Locale::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), ::Locale::CompactNumberFormatType::CurrencyShort);
else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long)
format_rules = ::Locale::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), ::Locale::CompactNumberFormatType::DecimalLong);
else
format_rules = ::Locale::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), ::Locale::CompactNumberFormatType::DecimalShort);
::Locale::NumberFormat const* best_number_format = nullptr;
for (auto const& format_rule : format_rules) {
if (format_rule.magnitude > magnitude)
break;
best_number_format = &format_rule;
}
if (best_number_format == nullptr)
return 0;
number_format.set_compact_format(*best_number_format);
return best_number_format->exponent;
}
default:
VERIFY_NOT_REACHED();
}
}
// 1.1.18 ToIntlMathematicalValue ( value ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-tointlmathematicalvalue
ThrowCompletionOr<MathematicalValue> to_intl_mathematical_value(VM& vm, Value value)
{
// 1. Let primValue be ? ToPrimitive(value, number).
auto primitive_value = TRY(value.to_primitive(vm, Value::PreferredType::Number));
// 2. If Type(primValue) is BigInt, return the mathematical value of primValue.
if (primitive_value.is_bigint())
return primitive_value.as_bigint().big_integer();
// FIXME: The remaining steps are being refactored into a new Runtime Semantic, StringIntlMV.
// We short-circuit some of these steps to avoid known pitfalls.
// See: https://github.com/tc39/proposal-intl-numberformat-v3/pull/82
if (!primitive_value.is_string()) {
auto number = TRY(primitive_value.to_number(vm));
return number.as_double();
}
// 3. If Type(primValue) is String,
// a. Let str be primValue.
auto const& string = primitive_value.as_string().deprecated_string();
// Step 4 handled separately by the FIXME above.
// 5. If the grammar cannot interpret str as an expansion of StringNumericLiteral, return not-a-number.
// 6. Let mv be the MV, a mathematical value, of ? ToNumber(str), as described in 7.1.4.1.1.
auto mathematical_value = TRY(primitive_value.to_number(vm)).as_double();
// 7. If mv is 0 and the first non white space code point in str is -, return negative-zero.
if (mathematical_value == 0.0 && string.view().trim_whitespace(TrimMode::Left).starts_with('-'))
return MathematicalValue::Symbol::NegativeZero;
// 8. If mv is 10^10000 and str contains Infinity, return positive-infinity.
if (mathematical_value == pow(10, 10000) && string.contains("Infinity"sv))
return MathematicalValue::Symbol::PositiveInfinity;
// 9. If mv is -10^10000 and str contains Infinity, return negative-infinity.
if (mathematical_value == pow(-10, 10000) && string.contains("Infinity"sv))
return MathematicalValue::Symbol::NegativeInfinity;
// 10. Return mv.
return mathematical_value;
}
// 1.1.19 GetUnsignedRoundingMode ( roundingMode, isNegative ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-getunsignedroundingmode
NumberFormat::UnsignedRoundingMode get_unsigned_rounding_mode(NumberFormat::RoundingMode rounding_mode, bool is_negative)
{
// 1. If isNegative is true, return the specification type in the third column of Table 2 where the first column is roundingMode and the second column is "negative".
// 2. Else, return the specification type in the third column of Table 2 where the first column is roundingMode and the second column is "positive".
// Table 2: Conversion from rounding mode to unsigned rounding mode, https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#table-intl-unsigned-rounding-modes
switch (rounding_mode) {
case NumberFormat::RoundingMode::Ceil:
return is_negative ? NumberFormat::UnsignedRoundingMode::Zero : NumberFormat::UnsignedRoundingMode::Infinity;
case NumberFormat::RoundingMode::Floor:
return is_negative ? NumberFormat::UnsignedRoundingMode::Infinity : NumberFormat::UnsignedRoundingMode::Zero;
case NumberFormat::RoundingMode::Expand:
return NumberFormat::UnsignedRoundingMode::Infinity;
case NumberFormat::RoundingMode::Trunc:
return NumberFormat::UnsignedRoundingMode::Zero;
case NumberFormat::RoundingMode::HalfCeil:
return is_negative ? NumberFormat::UnsignedRoundingMode::HalfZero : NumberFormat::UnsignedRoundingMode::HalfInfinity;
case NumberFormat::RoundingMode::HalfFloor:
return is_negative ? NumberFormat::UnsignedRoundingMode::HalfInfinity : NumberFormat::UnsignedRoundingMode::HalfZero;
case NumberFormat::RoundingMode::HalfExpand:
return NumberFormat::UnsignedRoundingMode::HalfInfinity;
case NumberFormat::RoundingMode::HalfTrunc:
return NumberFormat::UnsignedRoundingMode::HalfZero;
case NumberFormat::RoundingMode::HalfEven:
return NumberFormat::UnsignedRoundingMode::HalfEven;
default:
VERIFY_NOT_REACHED();
};
}
// 1.1.20 ApplyUnsignedRoundingMode ( x, r1, r2, unsignedRoundingMode ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-applyunsignedroundingmode
RoundingDecision apply_unsigned_rounding_mode(MathematicalValue const& x, MathematicalValue const& r1, MathematicalValue const& r2, Optional<NumberFormat::UnsignedRoundingMode> const& unsigned_rounding_mode)
{
// 1. If x is equal to r1, return r1.
if (x.is_equal_to(r1))
return RoundingDecision::LowerValue;
// FIXME: We skip this assertion due floating point inaccuracies. For example, entering "1.2345"
// in the JS REPL results in "1.234499999999999", and may cause this assertion to fail.
//
// This should be resolved when the "Intl mathematical value" is implemented to support
// arbitrarily precise decimals.
// https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#intl-mathematical-value
// 2. Assert: r1 < x < r2.
// 3. Assert: unsignedRoundingMode is not undefined.
VERIFY(unsigned_rounding_mode.has_value());
// 4. If unsignedRoundingMode is zero, return r1.
if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::Zero)
return RoundingDecision::LowerValue;
// 5. If unsignedRoundingMode is infinity, return r2.
if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::Infinity)
return RoundingDecision::HigherValue;
// 6. Let d1 be x r1.
auto d1 = x.minus(r1);
// 7. Let d2 be r2 x.
auto d2 = r2.minus(x);
// 8. If d1 < d2, return r1.
if (d1.is_less_than(d2))
return RoundingDecision::LowerValue;
// 9. If d2 < d1, return r2.
if (d2.is_less_than(d1))
return RoundingDecision::HigherValue;
// 10. Assert: d1 is equal to d2.
VERIFY(d1.is_equal_to(d2));
// 11. If unsignedRoundingMode is half-zero, return r1.
if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfZero)
return RoundingDecision::LowerValue;
// 12. If unsignedRoundingMode is half-infinity, return r2.
if (unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfInfinity)
return RoundingDecision::HigherValue;
// 13. Assert: unsignedRoundingMode is half-even.
VERIFY(unsigned_rounding_mode == NumberFormat::UnsignedRoundingMode::HalfEven);
// 14. Let cardinality be (r1 / (r2 r1)) modulo 2.
auto cardinality = r1.divided_by(r2.minus(r1));
// 15. If cardinality is 0, return r1.
if (cardinality.modulo_is_zero(2))
return RoundingDecision::LowerValue;
// 16. Return r2.
return RoundingDecision::HigherValue;
}
// 1.1.21 PartitionNumberRangePattern ( numberFormat, x, y ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-partitionnumberrangepattern
ThrowCompletionOr<Vector<PatternPartitionWithSource>> partition_number_range_pattern(VM& vm, NumberFormat& number_format, MathematicalValue start, MathematicalValue end)
{
// 1. If x is NaN or y is NaN, throw a RangeError exception.
if (start.is_nan())
return vm.throw_completion<RangeError>(ErrorType::IntlNumberIsNaN, "start"sv);
if (end.is_nan())
return vm.throw_completion<RangeError>(ErrorType::IntlNumberIsNaN, "end"sv);
// 2. Let result be a new empty List.
Vector<PatternPartitionWithSource> result;
// 3. Let xResult be ? PartitionNumberPattern(numberFormat, x).
auto raw_start_result = partition_number_pattern(vm, number_format, move(start));
auto start_result = PatternPartitionWithSource::create_from_parent_list(move(raw_start_result));
// 4. Let yResult be ? PartitionNumberPattern(numberFormat, y).
auto raw_end_result = partition_number_pattern(vm, number_format, move(end));
auto end_result = PatternPartitionWithSource::create_from_parent_list(move(raw_end_result));
// 5. If xResult is equal to yResult, return FormatApproximately(numberFormat, xResult).
if (start_result == end_result)
return format_approximately(number_format, move(start_result));
// 6. For each r in xResult, do
for (auto& part : start_result) {
// i. Set r.[[Source]] to "startRange".
part.source = "startRange"sv;
}
// 7. Add all elements in xResult to result in order.
result = move(start_result);
// 8. Let rangeSeparator be an ILND String value used to separate two numbers.
auto range_separator_symbol = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::RangeSeparator).value_or("-"sv);
auto range_separator = ::Locale::augment_range_pattern(range_separator_symbol, result.last().value, end_result[0].value);
// 9. Append a new Record { [[Type]]: "literal", [[Value]]: rangeSeparator, [[Source]]: "shared" } element to result.
PatternPartitionWithSource part;
part.type = "literal"sv;
part.value = range_separator.value_or(range_separator_symbol);
part.source = "shared"sv;
result.append(move(part));
// 10. For each r in yResult, do
for (auto& part : end_result) {
// a. Set r.[[Source]] to "endRange".
part.source = "endRange"sv;
}
// 11. Add all elements in yResult to result in order.
result.extend(move(end_result));
// 12. Return ! CollapseNumberRange(result).
return collapse_number_range(move(result));
}
// 1.1.22 FormatApproximately ( numberFormat, result ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatapproximately
Vector<PatternPartitionWithSource> format_approximately(NumberFormat& number_format, Vector<PatternPartitionWithSource> result)
{
// 1. Let i be an index into result, determined by an implementation-defined algorithm based on numberFormat and result.
// 2. Let approximatelySign be an ILND String value used to signify that a number is approximate.
auto approximately_sign = ::Locale::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), ::Locale::NumericSymbol::ApproximatelySign).value_or("~"sv);
// 3. Insert a new Record { [[Type]]: "approximatelySign", [[Value]]: approximatelySign } at index i in result.
PatternPartitionWithSource partition;
partition.type = "approximatelySign"sv;
partition.value = approximately_sign;
result.insert_before_matching(move(partition), [](auto const& part) {
return part.type.is_one_of("integer"sv, "decimal"sv, "plusSign"sv, "minusSign"sv, "percentSign"sv, "currency"sv);
});
// 4. Return result.
return result;
}
// 1.1.23 CollapseNumberRange ( result ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-collapsenumberrange
Vector<PatternPartitionWithSource> collapse_number_range(Vector<PatternPartitionWithSource> result)
{
// Returning result unmodified is guaranteed to be a correct implementation of CollapseNumberRange.
return result;
}
// 1.1.24 FormatNumericRange( numberFormat, x, y ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatnumericrange
ThrowCompletionOr<DeprecatedString> format_numeric_range(VM& vm, NumberFormat& number_format, MathematicalValue start, MathematicalValue end)
{
// 1. Let parts be ? PartitionNumberRangePattern(numberFormat, x, y).
auto parts = TRY(partition_number_range_pattern(vm, number_format, move(start), move(end)));
// 2. Let result be the empty String.
StringBuilder result;
// 3. For each part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 1.1.25 FormatNumericRangeToParts( numberFormat, x, y ), https://tc39.es/proposal-intl-numberformat-v3/out/numberformat/proposed.html#sec-formatnumericrangetoparts
ThrowCompletionOr<Array*> format_numeric_range_to_parts(VM& vm, NumberFormat& number_format, MathematicalValue start, MathematicalValue end)
{
auto& realm = *vm.current_realm();
// 1. Let parts be ? PartitionNumberRangePattern(numberFormat, x, y).
auto parts = TRY(partition_number_range_pattern(vm, number_format, move(start), move(end)));
// 2. Let result be ! ArrayCreate(0).
auto* result = MUST(Array::create(realm, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(realm, realm.intrinsics().object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(O, "source", part.[[Source]]).
MUST(object->create_data_property_or_throw(vm.names.source, js_string(vm, part.source)));
// e. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// f. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
}