This feature was problematic for several reasons:
- Tracking *all* the user activity seems like a privacy nightmare.
- LibGUI actually only supports one globally tracking widget per window,
even if no window is necessary, or if multiple callbacks are desired.
- Widgets can easily get confused whether an event is actually directed
at it, or is actually just the result of global tracking.
The third item caused an issue where right-clicking CatDog opened two
context menus instead of one.
Only one place used this argument and it was to hold on to a strong ref
for the object. Since we already do that now, there's no need to keep
this argument around since this can be easily captured.
This commit contains no changes.
Applets and windows would like to be able to know when the applet
area has been resized. For example, this happens asynchronously after
an applet has been resized, so we cannot then rely on the applet area
position synchronously after resizing. This adds a new message
applet_area_rect_changed and associated Event AppletAreaRectChange,
and the appropriate virtual functions.
This patchs adds a way for widgets exclude themselves from being a focus
candidate in Window::focus_a_widget_if_possible().
This is to allow the URL box to not get auto-focused when the browser
is loaded.
Currently, any number of menubars can be plugged in and out of a window.
This is unnecessary complexity, since we only need one menubar on a
window. This commit removes most of the logic for dynamically attaching
and detaching menubars and makes one menubar always available. The
menubar is only considered existent if it has at least a single menu in
it (in other words, an empty menubar will not be shown).
This commit additionally fixes a bug wherein menus added after a menubar
has been attached would not have their rects properly setup, and would
therefore appear glitched out on the top left corner of the menubar.
This reverts commit cfc9ee6f16.
This change was wrong: The parent *does* lose hover when the mouse
cursor enters a child widget. Hover is not hierarchical, there is only a
hovered window and a hovered widget within that window.
This fixes an issue with GUI::TabWidget buttons appearing hovered
despite the mouse cursor not being over the buttons.
You can now see the outline of GUI widgets when hovering them.
For example:
$ export GUI_HOVER_DEBUG=1
$ FileManager
Then move the mouse around in the file manager. :^)
Without this change, when the mouse starts hovering over a child widget,
the parent would receive a Leave event despite the parent widget not
losing mouse hover.
Instead of crashing when we can't make the back buffer non-volatile,
we now transition the window into single-buffered mode instead
(assuming it was originally in double-buffered mode.)
This reduces GUI fidelity a bit (by potentially making windows flicker
during repaint) but since it's only triggered in low-memory conditions,
it seems like a reasonable thing to sacrifice in order for the system
to carry on.
This patch also stops us from allocating entirely new backing stores
after the old ones were purged. If they were purged but reallocated
just fine, there's no need to allocate new memory again. We already
have fresh zero-filled pages in the existing bitmap at this point.
Making a bitmap non-volatile after being volatile may fail to allocate
physical pages after the kernel stole the old pages in a purge.
This is different from the pages being purged, but reallocated. In that
case, they are simply replaced with zero-fill-on-demand pages as if
they were freshly allocated.
Applications previously had to create a GUI::Menubar object, add menus
to it, and then call GUI::Window::set_menubar().
This patch introduces GUI::Window::add_menu() which creates the menubar
automatically and adds items to it. Application code becomes slightly
simpler as a result. :^)
Window::set_maximized requires non-zero window id to be a valid call,
i.e. calling Window::show beforehand. A verify statement before the
server call can help developers by hinting correct usage.
* LibGUI: Verify m_window_id is not-zero in set_maximized
Window::set_maximized requires non-zero window id to be a valid call,
i.e. calling Window::show beforehand. A verify statement before the
server call can help developers by hinting correct usage.
* LibGUI: Paint background when the fullscreen window is transparent
The windows in the background are ignored when the window is fullscreen.
However, we still would like to see the background if that window is
transparent.
* Userland: Add ability to capture rectangular region in shot
A click and drag selectable, transparent, fullscreen window is
displayed with the command line argument -r for screenshots.
The only remaining sync call from client to server is now the call
that switches a window's backing store. That one actually relies on
the synchronization to hand over ownership of the backing stores,
so it has to stay synchronous for now.
This fixes the build by hiding the problem from the compiler, but it's
a useful change in and of itself anyway.
A malloc/free per every mouse event is pretty annoying, especially when
we can actually avoid it.
The launch_origin_rect parameter to create_window() specifies where on
screen the window was launched from. It's optional, but if you provide
it, the new window will have a short wireframe animation from the origin
to the initial window frame rect.
GUI::Window looks for the "__libgui_launch_origin_rect" environment
variable. Put your launch origin rect in there with the format
"<x>,<y>,<width>,<height>" and the first GUI::Window shown by the app
will use that as the launch origin rect.
Also it looks pretty neat, although I'm sure we can improve it. :^)
This allows WindowServer to use multiple framebuffer devices and
compose the desktop with any arbitrary layout. Currently, it is assumed
that it is configured contiguous and non-overlapping, but this should
eventually be enforced.
To make rendering efficient, each window now also tracks on which
screens it needs to be rendered. This way we don't have to iterate all
the windows for each screen but instead use the same rendering loop and
then only render to the screen (or screens) that the window actually
uses.
Let clients manage their own window ID's. If you try to create a new
window with an existing ID, WindowServer will simply disconnect you
for misbehaving.
This removes the need for window creation to be synchronous, which
means that most GUI applications can now batch their entire GUI
initialization sequence without having to block waiting for responses.
Previous to this commit, if a `Window` wanted to set its width or height
greater than `INT16_MAX` (32768), both the application owning the Window
and the WindowServer would crash.
The root of this issue is that `size_would_overflow` check in `Bitmap`
has checks for `INT16_MAX`, and `Window.cpp:786` that is called by
`Gfx::Bitmap::create_with_anonymous_buffer` would get null back, then
causing a chain of events resulting in crashes.
Crashes can still occur but with `VERIFY` and `did_misbehave` the
causes of the crash can be more readily identified.
When setting a Widget->set_visible(false), if that Widget->has_focus()
it will continue to have focus, even though it's not visible to the user
anymore.
Now calling Widget->set_visible(false) will remove focus from the Widget
if it had focus, and the Window will give focus back to the Widget
that had it previously, if there was one.
Instead of using a low-level, proprietary API inside LibGfx, let's use
Core::AnonymousBuffer which already abstracts anon_fd and offers a
higher-level API too.
Reapply the app icon if the we are coming back from "frameless" mode.
This will re-initialize the icon representing the app in the task bar,
instead of displaying the default application icon.
This bug was visible in "Cube Demo" as well as the "Analog Clock".
Most of the IPC that happens between clients and WindowServer when
creating and configuring windows can be asynchronous. This further
reduces the amount of ping-ponging played during application startup.
Creating a menu/menubar needs to be synchronous because we need the
ID from the response, but adding stuff *to* menus (and adding menus
to menubars, and menubars to windows) can all be asynchronous.
This dramatically reduces the amount of IPC ping-pong played by
each GUI application during startup.
I measured how long it takes TextEditor to enter the main event loop
and it's over 10% faster here. (Down from ~86ms to ~74ms)
This changes client methods so that they return the IPC response's
return value directly - instead of the response struct - for IPC
methods which only have a single return value.
This state lives in WindowServer and has no local copy in the client
process for now. This may turn out to be a performance issue, and if
it does we can easily cache it.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
With this patch the window manager related functionality is split out
onto a new endpoint pair named WindowManagerServer/Client. This allows
window manager functionality to be potentially privilege separated in
the future. To this end, a new client named WMConnectionClient
is used to maintain a window manager connection. When a process
connects to the endpoint and greets the WindowServer as a window manager
(via Window::make_window_manager(int)), they're subscribed to the events
they requested via the WM event mask.
This patch also removes the hardcoding of the Taskbar WindowType to
receive WM events automatically. However, being a window manager still
requires having an active window, at the moment.
I hereby declare these to be full nouns that we don't split,
neither by space, nor by underscore:
- Breadcrumbbar
- Coolbar
- Menubar
- Progressbar
- Scrollbar
- Statusbar
- Taskbar
- Toolbar
This patch makes everything consistent by replacing every other variant
of these with the proper one. :^)