This necessitated making the JIT::Compiler aware of the current
Bytecode::Executable, since that's where all the string literals are
held, but that seems like a good thing.
We should initialize jump targets when constructing the jump instruction
instead of doing it later. This was already the case in all construction
sites but one. This first patch converts all those sites to pass final
targets to the constructor directly.
Our implementation of environment.CreateImmutableBinding(name, true)
in this AO was not correctly initializing const variables in strict
mode. This would mean that constant declarations in for loop bodies
would not throw if they were modified.
To fix this, add a new parameter to CreateVariable to set strict mode.
Also remove the vm.is_strict mode check here, as it doesn't look like
anywhere in the spec will change strict mode depending on whether the
script itself is running in script mode or not.
This fixes two of our test-js tests, no change to test262.
Instead of running a big switch statement on the opcode when checking
how long an instruction is, we now simply store that in a member
variable at construction time for instant access.
This yields a 10.2% speed-up on Kraken/ai-astar :^)
If we're inside of a `with` statement scope, we have to take care to
extract the correct `this` value for use in calls when calling a method
on the binding object via an Identifier instead of a MemberExpression.
This makes Vue.js work way better in the bytecode VM. :^)
Also, 1 new pass on test262.
These passes have not been shown to actually optimize any JS, and tests
have become very flaky with optimizations enabled. Until some measurable
benefit is shown, remove the optimization passes to reduce overhead of
maintaining bytecode operations and to reduce CI churn. The framework
for optimizations will live on in git history, and can be restored once
proven useful.
Rather than splitting the Iterator type and its AOs into two files,
let's combine them into one file to match every other JS runtime object
that we have.
The RegExpLiteral AST node already has the parsed regex::Parser::Result
so let's plumb that over to the bytecode executable instead of reparsing
the regex every time NewRegExp is executed.
~12% speed-up on language/literals/regexp/S7.8.5_A2.1_T2.js in test262.
Using a special instruction to access global variables allows skipping
the environment chain traversal for them and going directly to the
module/global environment. Currently, this instruction only caches the
offset for bindings that belong to the global object environment.
However, there is also an opportunity to cache the offset in the global
declarative record.
This change results in a 57% increase in speed for
imaging-gaussian-blur.js in Kraken.
When building an object from an object expression, we don't want to
go through the full property setting machinery. This patch adds a new
PropertyKind::DirectKeyValue for PutById which guarantees that the
property becomes an own property.
This fixes an issue where setting the "__proto__" property in object
expressions wasn't working right.
12 new passes on test262. :^)
The instructions GetById and GetByIdWithThis now remember the last-seen
Shape, and if we see the same object again, we reuse the property offset
from last time without doing a new lookup.
This allows us to use Object::get_direct(), bypassing the entire lookup
machinery and saving lots of time.
~23% speed-up on Kraken/ai-astar.js :^)
- Update ECMAScriptFunctionObject::function_declaration_instantiation
to initialize local variables
- Introduce GetLocal, SetLocal, TypeofLocal that will be used to
operate on local variables.
- Update bytecode generator to emit instructions for local variables
This avoids the overhead of allocating a new Array on every function
call, saving a substantial amount of time and avoiding GC thrash.
This patch only makes use of Op::Call in CallExpression. There are other
places we should codegen this op. We should also do the same for super
expression calls.
~5% speed-up on Kraken/stanford-crypto-ccm.js
Forcing every function call to allocate a new Array just to accommodate
spread parameters is not very nice, so let's start moving towards making
this a special case rather than the general (and only) case.
This makes them trivially copyable, which is an assumption multiple
optimizations use when rebuilding the instruction stream.
This fixes most optimized crashes in the test262 suite.
Since we no longer need to create or leave var environments directly
in bytecode, we can streamline the two instructions by making them
always operate on the lexical environment.
Instead of implementing this AO in bytecode, we now have an instruction
for it that simply invokes the C++ implementation.
This allows us to simplify Bytecode::Generator quite a bit by removing
all the variable scope tracking.
This uses a newly added instruction `ScheduleJump`
This instruction tells the finally proceeding it, that instead of
jumping to it's next block it should jump to the designated block.
Note that this still keeps the old behaviour of putting things in std by
default on serenity so the tools can be happy, but if USING_AK_GLOBALLY
is unset, AK behaves like a good citizen and doesn't try to put things
in the ::std namespace.
std::nothrow_t and its friends get to stay because I'm being told that
compilers assume things about them and I can't yeet them into a
different namespace...for now.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This gives us better debug output when analysing calls to `undefined`
and also fixes multiple test-js cases expecting an
`(evaluated from $Expression)` in the error message.
This also refactors out the generation of that string, to avoid code
duplication with the AST interpreter.