Currently, the unique string lists are stored in the initialized data
sections of their shared libraries. In order to move the data to the
read-only section, generate the strings using RLE arrays.
We generate two arrays: the first is the RLE data itself, the second is
a list of indices into the RLE array for each string. We then generate a
decoding method to convert an RLE string to a StringView.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Currently contains just each locale's character order, but is set up to
easily add other text layout fields from the CLDR if ECMA-402 eventually
requires them.
This commit has no behavior changes.
In particular, this does not fix any of the wrong uses of the previous
default parameter (which used to be 'false', meaning "only replace the
first occurence in the string"). It simply replaces the default uses by
String::replace(..., ReplaceMode::FirstOnly), leaving them incorrect.
BCP 47 will be the single source of truth for known calendar and number
system keywords, and their aliases (e.g. "gregory" is an alias for
"gregorian"). Move the generation of available keywords to where we
parse the BCP 47 data, so that hard-coded aliases may be removed from
other generators.
We have a fair amount of hard-coded keywords / aliases that can now be
replaced with real data from BCP 47. As a result, the also changes the
awkward way we were previously generating keys. Before, we were more or
less generating keywords as a CSV list of keys, e.g. for the "nu" key,
we'd generate "latn,arab,grek" (ordered by locale preference). Then at
runtime, we'd split on the comma. We now just generate spans of keywords
directly.
This package was originally meant to be included in CLDR version 40, but
was missed in their release scripts. This has been resolved:
https://unicode-org.atlassian.net/browse/CLDR-15158
Unfortunately, the CLDR was re-released with the same version number. So
to bust the build's CLDR cache, change the "version" used to detect that
we need to redownload the CLDR.
This adds a generator utility to read an entire file and parse it as a
JSON value. This is heavily used by the CLDR generators. The idea here
is to put the file reading details in the utility so that when we have a
good story for generically reading an entire stream in LibCore, we can
update the generators to use that by only touching this helper.
Unlike other BCP47 keywords that we are parsing, these only appear in
the BCP47 XML file itself within the CLDR. The values are very simple
though, so just hard code them until the Unicode org re-releases the
CLDR with BCP47: https://unicode-org.atlassian.net/browse/CLDR-15158
Currently, the UnicodeLocale generator collects a list of known locales
from the CLDR before processing language display names. For each locale,
the identifier is broken into language, script, and region subtags, and
we create a list of seen languages. When processing display names, we
skip languages we hadn't seen in that first step.
This is insufficient for language display names like "en-GB", which do
not have an locale entry in the CLDR, and thus are skipped. So instead,
create the list of known languages by actually reading through the list
of languages which have a display name.
These patterns indicate how to display locale strings when that locale
contains multiple subtags. For example, "en-US" would be displayed as
"English (United States)".
Note there's a bit of an unfortunate duplication in the calendar enum
generated by UnicodeLocale and the existing enum generated by
UnicodeDateTimeFormat. The former contains every calendar known to the
CLDR, whereas the latter contains the calendars we've actually parsed
for DateTimeFormat (currently only Gregorian). The new enum generated
here can be removed once DateTimeFormat knows about all calendars.
This is a temporary mechanism while LibUnicode is in an in-between state
where some symbols are weakly linked and others are dynamically loaded.
The latter require an asm() label to be loaded.
This is not a calendar supported by ECMA-402, so let's not waste space
with its data.
Further, don't generate "gregorian" as a valid Unicode locale extension
keyword. It's an invalid type identifier, thus cannot be used in locales
such as "en-u-ca-gregorian".
As noted by ECMA-402, if a supported locale contains all of a language,
script, and region subtag, then the implementation must also support the
locale without the script subtag. The most complicated example of this
is the zh-TW locale.
The list of locales in the CLDR database does not include zh-TW or its
maximized zh-Hant-TW variant. Instead, it inlcudes the zh-Hant locale.
However, zh-Hant-TW is listed in the default-content locale list in the
cldr-core package. This defines an alias from zh-Hant-TW to zh-Hant. We
must then also support the zh-Hant-TW alias without the script subtag:
zh-TW. This transitively maps zh-TW to zh-Hant, which is a case quite
heavily tested by test262.
Previously, we were just copying the locale data into default-content
locales (for example, copying the "en" data into "en-US"). Instead, we
can just define the default-content locales as aliases to their main
locales.
Also add slightly richer parse errors now that we can include a string
literal with returned errors.
This will allow us to use TRY() when working with JSON data.
For example, there isn't a unique set of data for the en-US locale;
rather, it defaults to the data for the en locale. See this commit for
much more detail: 357c97dfa8
Currently, LibUnicode is only parsing and generating the "long" style of
currency display names. However, the CLDR contains "short" and "narrow"
forms as well that need to be handled. Parse these, and update LibJS to
actually respect the "style" option provided by the user for displaying
currencies with Intl.DisplayNames.
Note: There are some discrepencies between the engines on how style is
handled. In particular, running:
new Intl.DisplayNames('en', {type:'currency', style:'narrow'}).of('usd')
Gives:
SpiderMoney: "USD"
V8: "US Dollar"
LibJS: "$"
And running:
new Intl.DisplayNames('en', {type:'currency', style:'short'}).of('usd')
Gives:
SpiderMonkey: "$"
V8: "US Dollar"
LibJS: "$"
My best guess is V8 isn't handling style, and just returning the long
form (which is what LibJS did before this commit). And SpiderMoney can
handle some styles, but if they don't have a value for the requested
style, they fall back to the canonicalized code passed into of().
The data used for number formatting is going to grow quite a bit when
the cldr-units package is parsed. To prevent the generated UnicodeLocale
file from growing outrageously large, the number formatting data can go
into its own file. To prepare for this, move code that will be common
between the generators for UnicodeLocale and UnicodeNumberFormat to the
utility header.
This will be needed for the ComputeExponentForMagnitude AO for compact
formatting, namely step 5b:
Let exponent be an implementation- and locale-dependent (ILD) integer
by which to scale a number of the given magnitude in compact notation
for the current locale.
A number formatting pattern in the CLDR contains one or two entries,
delimited by a semi-colon. Previously, LibUnicode was just storing the
entire pattern as one string. This changes the generator to split the
pattern on that delimiter and generate the 3 unique patterns expected by
ECMA-402.
The rules for generating the 3 patterns are as follows:
* If the pattern contains 1 entry, it is the zero pattern. The positive
pattern is the zero pattern prepended with {plusSign}. The negative
pattern is the zero pattern prepended with {minusSign}.
* If the pattern contains 2 entries, the first is the zero pattern, and
the second is the negative pattern. The positive pattern is the zero
pattern prepended with {plusSign}.
The number system data in the CLDR contains information on how to format
numbers in a locale-dependent manner. Start parsing this data, beginning
with numeric symbol strings. For example the symbol NaN maps to "NaN" in
the en-US locale, and "非數值" in the zh-Hant locale.
Some locales in the CLDR have alternate default numbering systems listed
under "defaultNumberingSystem-alt-*", e.g.:
"defaultNumberingSystem": "arab",
"defaultNumberingSystem-alt-latn": "latn",
"otherNumberingSystems": {
"native": "arab"
},
We were previously only parsing "defaultNumberingSystem" and
"otherNumberingSystems". This odd format appears to be an artifact of
converting from XML.
This isn't particularly important because this generates code that is
quite hidden from outside callers. But when viewing the generated code,
it's a bit nicer to read e.g. enum identifiers such as "MinusSign"
rather than "Minussign".