This implements the `glLightf{v}` family of functions used to set
lighting parameters per light in the GL. It also fixes an incorrect
prototype for the user exposed version of `glLightf{v}` in which
`params` was not marked as `const`.
Since the alpha blend configuration should not change between most calls
of draw_primitives it makes no sense to reinitialize the blend factors
for every rasterized triangle.
The alpha blend factors are now set up whenever the device config
changes. The blend factors are stored in struct AlphaBlendFactors.
This adds member functions Device::rasterize_triangle() and
Device::shade_fragments(). They were free standing functions/lambdas
previously which led to a lot of parameters being passed around.
This displays statistics regarding frame timings and number of pixels
rendered.
Timings are based on the time between draw_debug_overlay() invocations.
This measures actual number of frames presented to the user vs. wall
clock time so this also includes everything the app might do besides
rendering.
Triangles are counted after clipping. This number might actually be
higher than the number of triangles coming from LibGL.
Pixels are counted after the initial scissor and coverage test. Pixels
rejected here are not counted. Shaded pixels is the percentage of all
pixels that made it to the shading stage. Blended pixels is the
percentage of shaded pixels that were alpha blended to the color buffer.
Overdraw measures how many pixels were shaded vs. how many pixels the
render target has. e.g. a 640x480 render target has 307200 pixels. If
exactly that many pixels are shaded the overdraw number will read 0%.
614400 shaded pixels will read as an overdraw of 100%.
Sampler calls is simply the number of times sampler.sample_2d() was
called.
Texture coordinate generation is the concept of automatically
generating vertex texture coordinates instead of using the provided
coordinates (i.e. `glTexCoord`).
This commit implements support for:
* The `GL_TEXTURE_GEN_Q/R/S/T` capabilities
* The `GL_OBJECT_LINEAR`, `GL_EYE_LINEAR`, `GL_SPHERE_MAP`,
`GL_REFLECTION_MAP` and `GL_NORMAL_MAP` modes
* Object and eye plane coefficients (write-only at the moment)
This changeset allows Tux Racer to render its terrain :^)
This follows the OpenGL 1.5 spec much more closely. We need to store
the eye coordinates especially, since they are used in texture
coordinate generation and fog fragment depth calculation.
* LibGL now supports the `GL_NORMALIZE` capability
* LibSoftGPU transforms and normalizes the vertices' normals
Normals are heavily used in texture coordinate generation, to be
implemented in a future commit.
This adds a method `info()` to SoftGPU that returns the name of the
hardware vendor and device name, as well as the number of texture untis.
LibGL uses the returned texture unit count to initialize its internal
texture unit array.
Replaces the GLenum used in RasterizerConfig to select the draw buffer
with a simple boolean that disabled color output when the draw buffer
is set to GL_NONE on the OpenGL side.
We now sample textures from the device owned image samplers.
Passing of enabled texture units has been simplified by only passing a
list of texture unit indices.