We were accidentally skipping over most of the CPU registers by
incrementing the register index by sizeof(FlatPtr) instead of 1.
This fixes a long-standing issue where live objects could still get
garbage-collected if they were only pointed to by an unlucky register.
Without this change, using {Nonnull,}GCPtr<T const> would complain that
there are multiple constructors which resolve to the same type (T& and
T const&). This removes that disambiguation and allows us to slowly fix
all of the constness issues surrounding GCPtrs. This change will not be
necessary in the future as we will be able to remove all of the const
qualifiers from the Ptr classes (they'll be in the template type
instead).
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
The goal here is to allow Cell::initialize to return a ThrowCompletion,
to handle OOM for example. Cell.h will then need to include Completion.h
which must include Value.h. This currently can't happen because Value.h
includes BigInt.h, which in turn includes Cell.h. So we would have an
include cycle.
This removes BigInt.h from Value.h, as it is forward-declarable (it is
only referred to with a reference or pointer). Then the Value overload
for Cell::Visitor::visit is moved to Cell.h, and missing BigInt.h
includes as peppered as needed.
This will temporarily bloat the size of PrimitiveString as LibJS is
transitioned to use String throughout, but will make doing so piecemeal
much easier.
We don't need to be checking the current time unconditionally when we
only observe the results if we're going to dump the GC stats.
This saves two trips to clock_gettime at the cost of an extra branch.
GCPtr can be null so it's not safe to assign it to a NonnullGCPtr unless
you know it to be non-null.
This exposed a number of wrong uses in LibWeb which had to be fixed as
part of this change.
Note that this still keeps the old behaviour of putting things in std by
default on serenity so the tools can be happy, but if USING_AK_GLOBALLY
is unset, AK behaves like a good citizen and doesn't try to put things
in the ::std namespace.
std::nothrow_t and its friends get to stay because I'm being told that
compilers assume things about them and I can't yeet them into a
different namespace...for now.
Even if the pointer value is const, the value they point to is not
necessarily const, so these functions should not add the qualifier.
This also removes the redundant non-const implementations of these
operators.
Doing things in the destructor of a GC-allocated object isn't always
safe, in case it involves accessing other GC-allocated objects.
If they were already swept by GC, we'd be poking into freed memory.
This patch adds a separate finalization pass where GC calls finalize()
on every unmarked cell that's about to be deleted.
It's safe to access other GC objects in finalize(), even if they're
also unmarked.
This was previously indirectly forcing Heap/Handle.h to include it
instead. This will let us include Handle.h from PropertyKey, which will
allow us to solve a different issue.
SafeFunction automatically registers its closure memory area in a place
where the JS garbage collector can find it.
This means that you can capture JS::Value and arbitrary pointers into
the GC heap in closures, as long as you're using a SafeFunction, and the
GC will not zap those values!
There's probably some performance impact from this, and there's a lot of
things that could be nicer/smarter about it, but let's build something
that ensures safety first, and we can worry about performance later. :^)
JS::Value stores 48 bit pointers to separately allocated objects in its
payload. On x86-64, canonical addresses have their top 16 bits set to
the same value as bit 47, effectively meaning that the value has to be
sign-extended to get the pointer. AArch64, however, expects the topmost
bits to be all zeros.
This commit gates sign extension behind `#if ARCH(X86_64)`, and adds an
`#error` for unsupported architectures, so that we do not forget to
think about pointer handling when porting to a new architecture.
Fixes#15290FixesSerenityOS/ladybird#56
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.
There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
These are two new smart pointers that are really just raw pointers under
the hood. The initial benefit is all in the names, they allow us to
declare that we're pointing at something in the GC heap.
Later we may also find ways to add debugging logic or static analysis to
these types.
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception
This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
Using the fact that there are 2^52-2 NaN representations we can
"NaN-box" all the Values possible. This means that Value no longer has
an explicit "Type" but that information is now stored in the bits of a
double. This is done by "tagging" the top two bytes of the double.
For a full explanation see the large comment with asserts at the top of
Value.
We can also use the exact representation of the tags to make checking
properties like nullish, or is_cell quicker. But the largest gains are
in the fact that the size of a Value is now halved.
The SunSpider and other benchmarks have been ran to confirm that there
are no regressions in performance compared to the previous
implementation. The tests never performed worse and in some cases
performed better. But the biggest differences can be seen in memory
usage when large arrays are allocated. A simple test which allocates a
1000 arrays of size 100000 has roughly half the memory usage.
There is also space in the representations for future expansions such as
tuples and records.
To ensure that Values on the stack and registers are not lost during
garbage collection we also have to add a check to the Heap to check for
any of the cell tags and extracting the canonical form of the pointer
if it matches.
These are mostly minor mistakes I've encountered while working on the
removal of StringView(char const*). The usage of builder.put_string over
Format<FormatString>::format is preferrable as it will avoid the
indirection altogether when there's no formatting to be done. Similarly,
there is no need to do format(builder, "{}", number) when
builder.put_u64(number) works equally well.
Additionally a few Strings where only constant strings were used are
replaced with StringViews.
Previously this would've said `make_handle(Value(1234))` is null, as it
did not contain a cell (but rather a plain Value), which made throwing
primitives spin forever in BC mode.
This helps make the overall codebase consistent. `class_name()` in
`Kernel` is always `StringView`, but not elsewhere.
Additionally, this results in the `strlen` (which needs to be done
when printing or other operations) always being computed at
compile-time.