Changing `calculate_min_content_heigh()` and
`calculate_min_content_heigh()` to accept width as `CSSPixels`, instead
of `AvailableSize` that might be indefinite, makes it more explicit
that width is supposed to be known by the time height is measured.
This change has a bit of collateral damage which is rows height
calculation regression in `table/inline-table-width` that worked before
by accident.
Using avilable space directly while resolving table container width
allows to avoid assigning it to table wrapper box content width which
sometimes involves infinite (saturated) values.
Also this allows to get rid of set_max_content_width() which is a hack
that allows to bypass set_content_width() to assign infinite
(saturated) width to a box.
Closes https://github.com/SerenityOS/serenity/issues/19521
Returning greatest_child_width() from automatic_content_width() in BFC
if root box children are inline and there are min/max-width that caused
width to be changed after IFC layout while content_width should be
always set to correct value by layout_inline_children() regardless of
layout mode.
I'm not sure if this is exactly correct, the link to CSS2 spec above
says something that clearance cannot separate boxes, but I'm not sure if
I understood it correctly or if I've done it in the right place.
However, this change fixes our block-and-inline/clearfix.html test again
(was regressed in previous commit).
Pseudo-elements like ::before and ::after were discarded when their
content property was an empty string (ignoring whitespace), because they
are anonymous containers with no lines.
Our previous way around it was to add an empty line box (see b062a0fb7c)
however it didn't actually work for cases described in the previous
commit.
This makes avatars and cover arts square on last.fm and "fixes" the test
css-pseudo-element-should-not-be-affected-by-presentational-hints.html.
Unfortunately, this also regresses on block-and-inline/clearfix.html,
but that hopefully will be handled in subsequent commit.
Allow the left margin of a box which creates a block formatting context
to overlap with left floating boxes which are siblings in the document
tree.
Fixes#20233 and the comment layout on https://lobste.rs.
In particular, in BFC:
- Non-floating, non-replaced elements
- Floating, non-replaced elements
- Floating, replaced elements
The first two regressed in 1d76126abe
The third one seems to have been introduced by this regression, as it
was seemingly copied from compute_width_for_floating_box in
7f9ede07bc
With multi-line text cells, we don't reliably know the height would stay
the same as the one set by the independent format context run. In such
situations, we can end up with a table box which is sized inconsistently
with the grid boxes of the table due to differences in line breaks.
In compute_table_box_width_inside_table_wrapper, we should only consider
available_width when it's valid. Values which come from {min,
max}-content constraints aren't meaningful and shouldn't be considered
for the cap.
When resolving a percentage min-width or min-height size against a
containing block currently under a min-content constraint, we should act
as if the containing block has zero size in that axis.
This is technically "undefined behavior" per CSS 2.2, but it seems
sensible to mirror the behavior of max-height in the same situation.
It also appears to match how other engines behave.
Fixes#19242
The margin from the containing blocks shouldn't be included in the
amount by which we increment x after a float was places. That coordinate
should be relative to the containing block.
Fixes the comments layout on https://lobste.rs.
Although DistinctNumeric, which is supposed to abstract the underlying
type, was used to represent CSSPixels, we have a whole bunch of places
in the layout code that assume CSSPixels::value() returns a
floating-point type. This assumption makes it difficult to replace the
underlying type in CSSPixels with a non-floating type.
To make it easier to transition CSSPixels to fixed-point math, one step
we can take is to prevent access to the underlying type using value()
and instead use explicit conversions with the to_float(), to_double(),
and to_int() methods.
Handle available space more carefully when computing a table width, in
order to avoid creating a definite infinite width when available space
width is max-content, as it's the case in calculate_max_content_width.
The constraint is thus correctly propagated by the time we cache the
computed value, which was previously rejected by the hash function due
to being definite but infinite instead of max-content.
Calculate a "preferred aspect ratio" based on the value of
`aspect-ratio` and the presence of a natural aspect ratio, and use that
in layout.
This is by no means complete or perfect, but we do now apply the given
aspect-ratio to things.
The spec is a bit vague, just saying to calculate sizes for
aspect-ratio'ed boxes the same as you would for replaced elements. My
naive solution here is to find everywhere we were checking for a
ReplacedBox, and then also accept a regular Box with a preferred aspect
ratio. This gets us pretty far. :^)
https://www.w3.org/TR/css-sizing-4/#aspect-ratio-minimum is not at all
implemented.
If a box has a negative margin-left, it may have a negative effective
offset within its parent BFC root coordinate system.
We can account for this when calculating the amount of left-side float
intrusion by flooring the X offset at 0.
Instead of just measuring the layout viewport, we now measure overflow
in every box that is a scroll container.
This has the side effect of no longer creating paintables for layout
boxes that didn't participate in layout. (For example, empty/anonymous
boxes that were ignored by flex itemization.)
Such boxes are now marked as "(not painted)" in the layout tree dumps,
as they have no paintable to dump geometry from.
These are only used during layout, and always within formatting context
code, so we might as well put them in FormattingContext and avoid having
to pass the LayoutState around all the time.
At one point in the past, we had some functions that were called across
different formatting context types, which necessitated making them
static and taking the LayoutState as a parameter.
In all cases, those functions were used to do incorrect hacks, all of
which we've replaced with more correct solutions. :^)
Separating the paths for replaced and non-replaced floating boxes lost
the logic for margin, padding and border which was done by
compute_width_for_floating_box. Set them the same way as we do for
block-level replaced elements, per the specification.
Solves conflict in layout tree "type system" when elements <label> (or
<button>) can't have `display: table` because Box can't be
Layout::Label (or Layout::ButtonBox) and Layout::TableBox at the same
time.
The path for floating, replaced elements must not fall through to the
path taken for floating, non-replaced elements. The former works like
inline replaced elements, while the latter uses a completely different
algorithm which doesn't account for intrinsic ratio. Falling through
overrides the correct value computed by the former.
Fixes#19061.
This fixes the issue when margin collapsing state was always reset if
a box has clear property not equal to none even if it does not actually
introduce clearance.
This fixes the issue where max margin is used to find offset of
floating box although horizonal margins do not collapse so they need
to be summed instead.
This fixes a plethora of rounding problems on many websites.
In the future, we may want to replace this with fixed-point arithmetic
(bug #18566) for performance (and consistency with other engines),
but in the meantime this makes the web look a bit better. :^)
There's a lot more things that could be converted to doubles, which
would reduce the amount of casting necessary in this patch.
We can do that incrementally, however.
Previously, calling `.right()` on a `Gfx::Rect` would return the last
column's coordinate still inside the rectangle, or `left + width - 1`.
This is called 'endpoint inclusive' and does not make a lot of sense for
`Gfx::Rect<float>` where a rectangle of width 5 at position (0, 0) would
return 4 as its right side. This same problem exists for `.bottom()`.
This changes `Gfx::Rect` to be endpoint exclusive, which gives us the
nice property that `width = right - left` and `height = bottom - top`.
It enables us to treat `Gfx::Rect<int>` and `Gfx::Rect<float>` exactly
the same.
All users of `Gfx::Rect` have been updated accordingly.
We have to special-case these, otherwise our normal CSS layout algorithm
will see that some SVG roots have width/height assigned, and make those
the used width/height.
When used in an SVG-as-image context, the outermost viewport must be the
authoritative root size.
There are a couple of things that went into this:
- We now calculate the intrinsic width/height and aspect ratio of <svg>
elements based on the spec algorithm instead of our previous ad-hoc
guesswork solution.
- Replaced elements with automatic size and intrinsic aspect ratio but
no intrinsic dimensions are now sized with the stretch-fit width
formula.
- We take care to assign both used width and used height to <svg>
elements before running their SVG formatting contexts. This ensures
that the inside SVG content is laid out with knowledge of its
viewport geometry.
- We avoid infinite recursion in tentative_height_for_replaced_element()
by using the already-calculated used width instead of calling the
function that calculates the used width (since that may call us right
back again).
In order to fix this, I also had to reorganize the code so that we
create an independent formatting context even for block-level boxes
that don't have any children. This accidentally improves a table
layout test as well (for empty tables).
This code now works in terms of *intrusion* by left and right side
floats into a given box whose insides we're trying to layout.
Previously, it worked in terms of space occupied by floats in the root
box of the BFC they participated in. That created a bunch of edge cases
since the code asking about the information wasn't operating in root
coordinate space, but in the coordinate space of some arbitrarily nested
block descendant of the root.
This finally allows horizontal margins in the containing block chain to
affect floats and nested content correctly, and it also allows us to
remove a bogus workaround in InlineFormattingContext.
If the parent BFC can come up with a nice stretch-fit width for the flex
container, it will have already done so *before* even entering flex
layout. There's no need to do it again, midway through the flex layout
algorithm.
This wasn't just unnecessary, but we were also doing it incorrectly and
not taking margins into account when calculating the amount of available
space for stretch-fit. This led to oversized flex containers in the
presence of negative margins.
Fixes#18614
`calculate_max_content_height` expects the available width as the
second argument. However, the available height was mistakenly passed
before. This did not seem to cause any problems because TFC currently
does not respect height sizing constraints but still needs to be fixed.