It's more accurate to say that we're blocking on a mutex, rather than
blocking on a lock. The previous terminology made sense when this code
was using something called Kernel::Lock, but since it was renamed to
Kernel::Mutex, this updates brings the language back in sync.
It was annoyingly hard to spot these when we were using them with
different amounts of qualification everywhere.
This patch uses Thread::State::Foo everywhere instead of Thread::Foo
or just Foo.
Signal dispatch is already taken care of elsewhere, so there appears to
be no need for the hack in enter_current().
This also allows us to remove the Thread::m_in_block flag, simplifying
thread blocking logic somewhat.
Verified with the original repro for #4336 which this was meant to fix.
This function is large and unwieldy and forces Thread.h to #include
a bunch of things. The only reason it was in the header is because we
need to instantiate a blocker based on the templated BlockerType.
We actually keep block<BlockerType>() in the header, but move the
bulk of the function body out of line into Thread::block_impl().
To preserve destructor ordering, we add Blocker::finalize() which is
called where we'd previously destroy the Blocker.
For "destructive" disallowance of allocations throughout the system,
Thread gains a member that controls whether allocations are currently
allowed or not. kmalloc checks this member on both allocations and
deallocations (with the exception of early boot) and panics the kernel
if allocations are disabled. This will allow for critical sections that
can't be allowed to allocate to fail-fast, making for easier debugging.
PS: My first proper Kernel commit :^)
This change adds a thread member variable to track if we have a pending
promise violation on a kernel thread. This ensures that all code
properly propagates promise violations up to the syscall handler.
Suggested-by: Andreas Kling <kling@serenityos.org>
Instead, wait until we transition back to userspace. This stops
userspace from being able to suspend a thread indefinitely while it's
running in kernelspace (potentially holding some blocking mutex.)
This includes a new Thread::Blocker called SignalBlocker which blocks
until a signal of a matching type is pending. The current Blocker
implementation in the Kernel is very complicated, but cleaning it up is
a different yak for a different day.
As required by posix. Also rename Thread::clear_signals to
Thread::reset_signals_for_exec since it doesn't actually clear any
pending signals, but rather does execve related signal book-keeping.
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
Two instances of comparing a bool with == true or == false, and one
instance where we can just return an expression instead of checking it
to return true on succeess and false on failure.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
This change adds a static lock hierarchy / ranking to the Kernel with
the goal of reducing / finding deadlocks when running with SMP enabled.
We have seen quite a few lock ordering deadlocks (locks taken in a
different order, on two different code paths). As we properly annotate
locks in the system, then these facilities will find these locking
protocol violations automatically
The `LockRank` enum documents the various locks in the system and their
rank. The implementation guarantees that a thread holding one or more
locks of a lower rank cannot acquire an additional lock with rank that
is greater or equal to any of the currently held locks.
There are certain checks that we should skip if the system is crashing.
The system can avoid stack overflow during crash, or even triple
faulting while while handling issues that can causes recursive panics
or aborts.
We previously allowed Thread to exist in a state where its m_name was
null, and had to work around that in various places.
This patch removes that possibility and forces those who would create a
thread (or change the name of one) to provide a NonnullOwnPtr<KString>
with the name.
The default template argument is only used in one place, and it
looks like it was probably just an oversight. The rest of the Kernel
code all uses u8 as the type. So lets make that the default and remove
the unused template argument, as there doesn't seem to be a reason to
allow the size to be customizable.
This commit moves the KResult and KResultOr objects to Kernel/API to
signify that they may now be freely used by userspace code at points
where a syscall-related error result is to be expected. It also exposes
KResult and KResultOr to the global namespace to make it nicer to use
for userspace code.
This is the idiomatic way to declare type aliases in modern C++.
Flagged by Sonar Cloud as a "Code Smell", but I happen to agree
with this particular one. :^)
Previously, we would try to acquire a reference to the all processes
lock or other contended resources while holding both the scheduler lock
and the thread's blocker lock. This could lead to a deadlock if we
actually have to block on those other resources.
Let's use an RAII helper to avoid having to update this on every path
out of block().
Note that this extends the time under `m_in_block == true` by a little
but that should be harmless.
The `m_should_block` member variable that many of the Thread::Blocker
subclasses had was really only used to carry state from the constructor
to the immediate-unblock-without-blocking escape hatch.
This patch refactors the blockers so that we don't need to hold on
to this flag after setup_blocker(), and instead the return value from
setup_blocker() is the authority on whether the unblock conditions
are already met.
This was previously used after construction to check for early unblock
conditions that couldn't be communicated from the constructor.
Now that we've moved early unblock checks from the constructor into
setup_blocker(), we don't need should_block() anymore.
Instead of registering with blocker sets and whatnot in the various
Blocker subclass constructors, this patch moves such initialization
to a separate setup_blocker() virtual.
setup_blocker() returns false if there's no need to actually block
the thread. This allows us to bail earlier in Thread::block().
When adding a WaitQueueBlocker to a WaitQueue, it stored the blocked
thread in the registration's custom "void* data" slot.
This was only used to print the Thread* in some debug logging.
Now that Blocker always knows its origin Thread, we can simply add
a Blocker::thread() accessor and then get the blocked Thread& from
there. No need to register custom data.
There's no harm in the blocker always knowing which thread it originated
from. It also simplifies some logic since we don't need to think about
it ever being null.
The BlockerSet stores its blockers along with a "void* data" that may
contain some blocker-specific context relevant to the specific blocker
registration (for example, SelectBlocker stores a pointer to the
relevant entry in an array of SelectBlocker::FDInfo structs.)
When unregistering a blocker from a set, we don't need to key the
blocker by both the Blocker* and the data. Just the Blocker* is enough,
since all registrations for that blocker need to be removed anyway as
the blocker is about to be destroyed.
So we stop passing the "void* data" to BlockerSet::remove_blocker(),
which also allows us to remove the now-unneeded Blocker::m_block_data.
Namely, will_unblock_immediately_without_blocking(Reason).
This virtual function is called on a blocker *before any block occurs*,
if it turns out that we don't need to block the thread after all.
This can happens for one of two reasons:
- UnblockImmediatelyReason::UnblockConditionAlreadyMet
We don't need to block the thread because the condition for
unblocking it is already met.
- UnblockImmediatelyReason::TimeoutInThePast
We don't need to block the thread because a timeout was specified
and that timeout is already in the past.
This patch does not introduce any behavior changes, it's only meant to
clarify this part of the blocking logic.