There's no reason for this API to require a Layout::Box as input.
Any node that can have layout state is welcome, so this patch makes it
take NodeWithStyleAndBoxModelMetrics.
Changing `calculate_min_content_heigh()` and
`calculate_min_content_heigh()` to accept width as `CSSPixels`, instead
of `AvailableSize` that might be indefinite, makes it more explicit
that width is supposed to be known by the time height is measured.
This change has a bit of collateral damage which is rows height
calculation regression in `table/inline-table-width` that worked before
by accident.
Change associativity in computing of replaced element size to improve
precision of division.
Fixes vertically squashed image from Mozilla splash page MDN example.
Before this change, we always derived a box's baseline from its last
child, even if the last child didn't have any line boxes inside.
This caused baselines to slip further down vertically than expected.
There are more baseline alignment issues to fix, but this one was
responsible for a fair chunk of trouble. :^)
Once we've resolved the used flex item width & height, we should allow
percentage flex item sizes to resolve against them instead of forcing
flex items to always treat percentages as auto while doing intrinsic
sizing layout.
Regressed in 8dd489da61.
Make sure the insets and margins calculated according to the spec are
not later ignored and ad-hoc recomputed in
layout_absolutely_positioned_element.
Use the static position calculation in a couple of places where the
spec (and comment) was indicating it should be used.
Fixes#19362
While CSS 2.2 does tell us to use the "auto height for BFC roots"
calculation when resolving auto heights for abspos elements, that
doesn't make sense for other formatting context roots, e.g flex.
In lieu of implementing the entire new absolute positioning model from
CSS-POSITION-3, this patch borrows one small nugget from it: using
fit-content height as the auto height for non-BFC-root abspos elements.
Absolutely positioned elements should have their percentage sizes
resolved against the padding box of the containing block, not the
content box.
From CSS-POSITION-3 <https://www.w3.org/TR/css-position-3/#def-cb>
"..the containing block is formed by the padding edge of the ancestor.."
When resolving a percentage min-width or min-height size against a
containing block currently under a min-content constraint, we should act
as if the containing block has zero size in that axis.
This is technically "undefined behavior" per CSS 2.2, but it seems
sensible to mirror the behavior of max-height in the same situation.
It also appears to match how other engines behave.
Fixes#19242
The spec says the result of this algorithm is undefined in such cases,
and it appears that other engines yield a zero size.
More importantly, this prevents us from leaking a non-finite value into
the layout tree.
Although DistinctNumeric, which is supposed to abstract the underlying
type, was used to represent CSSPixels, we have a whole bunch of places
in the layout code that assume CSSPixels::value() returns a
floating-point type. This assumption makes it difficult to replace the
underlying type in CSSPixels with a non-floating type.
To make it easier to transition CSSPixels to fixed-point math, one step
we can take is to prevent access to the underlying type using value()
and instead use explicit conversions with the to_float(), to_double(),
and to_int() methods.
Calculate a "preferred aspect ratio" based on the value of
`aspect-ratio` and the presence of a natural aspect ratio, and use that
in layout.
This is by no means complete or perfect, but we do now apply the given
aspect-ratio to things.
The spec is a bit vague, just saying to calculate sizes for
aspect-ratio'ed boxes the same as you would for replaced elements. My
naive solution here is to find everywhere we were checking for a
ReplacedBox, and then also accept a regular Box with a preferred aspect
ratio. This gets us pretty far. :^)
https://www.w3.org/TR/css-sizing-4/#aspect-ratio-minimum is not at all
implemented.
Having this here instead of in ReplacedBox means we can access it when
figuring out what the "preferred aspect ratio" is.
There's some inconsistency between specs about what this is called, but
they're moving towards referring to this as "natural width/height/
aspect-ratio", so let's copy that terminology.
This fixes an issue where images with padding and/or border did not have
their size adjusted for `border-box`, thereby becoming larger than
intended by the author.
These are only used during layout, and always within formatting context
code, so we might as well put them in FormattingContext and avoid having
to pass the LayoutState around all the time.
At one point in the past, we had some functions that were called across
different formatting context types, which necessitated making them
static and taking the LayoutState as a parameter.
In all cases, those functions were used to do incorrect hacks, all of
which we've replaced with more correct solutions. :^)
Solves conflict in layout tree "type system" when elements <label> (or
<button>) can't have `display: table` because Box can't be
Layout::Label (or Layout::ButtonBox) and Layout::TableBox at the same
time.
In order to support intrinsic size keywords (such as fit-content), we
need to be able to calculate the intrinsic sizes of any element, not
just those that form their own formatting context.
When a non-FC-root element is passed to calculate_some_intrinsic_size(),
we now create a synthetic BFC to handle sizing of them.
Ignore anonymous block boxes when resolving percentage weights that
would refer to them, per the CSS 2 visual formatting model
specification. This fixes the case when we create an anonymous block
between an image which uses a percentage height relative to a parent
which specifies a definite height.
Fixes#19052.
This fixes a plethora of rounding problems on many websites.
In the future, we may want to replace this with fixed-point arithmetic
(bug #18566) for performance (and consistency with other engines),
but in the meantime this makes the web look a bit better. :^)
There's a lot more things that could be converted to doubles, which
would reduce the amount of casting necessary in this patch.
We can do that incrementally, however.
Previously, calling `.right()` on a `Gfx::Rect` would return the last
column's coordinate still inside the rectangle, or `left + width - 1`.
This is called 'endpoint inclusive' and does not make a lot of sense for
`Gfx::Rect<float>` where a rectangle of width 5 at position (0, 0) would
return 4 as its right side. This same problem exists for `.bottom()`.
This changes `Gfx::Rect` to be endpoint exclusive, which gives us the
nice property that `width = right - left` and `height = bottom - top`.
It enables us to treat `Gfx::Rect<int>` and `Gfx::Rect<float>` exactly
the same.
All users of `Gfx::Rect` have been updated accordingly.
There are a couple of things that went into this:
- We now calculate the intrinsic width/height and aspect ratio of <svg>
elements based on the spec algorithm instead of our previous ad-hoc
guesswork solution.
- Replaced elements with automatic size and intrinsic aspect ratio but
no intrinsic dimensions are now sized with the stretch-fit width
formula.
- We take care to assign both used width and used height to <svg>
elements before running their SVG formatting contexts. This ensures
that the inside SVG content is laid out with knowledge of its
viewport geometry.
- We avoid infinite recursion in tentative_height_for_replaced_element()
by using the already-calculated used width instead of calling the
function that calculates the used width (since that may call us right
back again).
If just .to_px() is used the height can end up as the float `inf` or
`nan`. This caused an OOM when loading Polygon as this `inf` would
become a `nan` and propagate to the SVG painting, which then attempts
to draw a path with nan control points, which would make the
Gfx::Painter infinitely split the path till it OOM'd.
Instead of bailing after resolving one violated constraint, we have to
continue down the list of remaining constraints.
We now also call the constraint solver for all replaced elements with
"auto" for both width and height.
Co-authored-by: 0GreenClover0 <clovers02123@gmail.com>