These functions all have a very common case that can be dealt with a
very simple inline check, often avoiding the need to call an out-of-line
function. This patch moves the common case to inline functions in a new
ValueInlines.h header (necessary due to header dependency issues..)
8% speed-up on the entire Kraken benchmark :^)
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
This is needed so that the allocated NativeFunction receives the correct
realm, usually forwarded from the Object's initialize() function, rather
than using the current realm.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Although this already works in most cases in non-kvm serenity cases the
cosh and other math function tend to return incorrect values for
Infinity. This makes sure that whatever the underlying cosh function
returns Math.cosh conforms to the spec.
The JS behaviour of exponentiation on two number typed values is
not a simple matter of forwarding to ::pow(double, double). So,
this factors out the Math.pow logic to allow it to be shared with
Value::exp.
In order to reduce our reliance on __builtin_{ffs, clz, ctz, popcount},
this commit removes all calls to these functions and replaces them with
the equivalent functions in AK/BuiltinWrappers.h.
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
If the argument to this function is greater then or equal to 2^32, the
`double` => `u32` cast produces undefined behavior, which Clang catches.
To fix this, we now use `ToUint32` for getting the integer argument, as
specified by ECMA-262.
This removes all usages of the non-standard define_property helper
method and replaces all it's usages with the specification required
alternative or with define_direct_property where appropriate.
Requires a bunch of find-and-replace updates across LibJS, but
constructing a PropertyName from a nullptr Symbol* should not be
possible - let's enforce this at the compiler level instead of using
VERIFY() (and already dereference Symbol pointers at the call site).
We were doing a *lot* of string-to-int conversion while creating a new
global object. This happened because Object::put() would try to convert
the property name (string) to an integer to see if it refers to an
indexed property.
Sidestep this issue by using PropertyName for the CommonPropertyNames
struct on VM (vm.names.foo), and giving PropertyName a flag that tells
us whether it's a string that *may be* a number.
All CommonPropertyNames are set up so they are known to not be numbers.
As mentioned on Discord earlier, we'll add these to all new functions
going forward - this is the backfill. Reasons:
- It makes you look at the spec, implementing based on MDN or V8
behavior is a no-go
- It makes finding the various functions that are non-compliant easier,
in the future everything should either have such a comment or, if it's
not from the spec at all, a comment explaining why that is the case
- It makes it easier to check whether a certain abstract operation is
implemented in LibJS, not all of them use the same name as the spec.
E.g. RejectPromise() is Promise::reject()
- It makes it easier to reason about vm.arguments(), e.g. when the
function has a rest parameter
- It makes it easier to see whether a certain function is from a
proposal or Annex B
Also:
- Add arguments to all functions and abstract operations that already
had a comment
- Fix some outdated section numbers
- Replace some ecma-international.org URLs with tc39.es
The specification requires that we immediately return Infinity during
the iteration over the arguments if positive or negative infinity is
encountered, and return a NaN if it is encountered and no Infinity was
found. The specification also requires all arguments to be coerced into
numbers before the operation starts, or else a number conversion
exception could be missed due to the Infinity/NaN early return.