ladybird/Userland/Libraries/LibJS/Runtime/MathObject.cpp
Andreas Kling 5eef07d232 LibJS: Avoid lots of string-to-int during global object construction
We were doing a *lot* of string-to-int conversion while creating a new
global object. This happened because Object::put() would try to convert
the property name (string) to an integer to see if it refers to an
indexed property.

Sidestep this issue by using PropertyName for the CommonPropertyNames
struct on VM (vm.names.foo), and giving PropertyName a flag that tells
us whether it's a string that *may be* a number.

All CommonPropertyNames are set up so they are known to not be numbers.
2021-06-13 19:11:29 +02:00

637 lines
21 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include <AK/Random.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/MathObject.h>
#include <math.h>
namespace JS {
MathObject::MathObject(GlobalObject& global_object)
: Object(*global_object.object_prototype())
{
}
void MathObject::initialize(GlobalObject& global_object)
{
auto& vm = this->vm();
Object::initialize(global_object);
u8 attr = Attribute::Writable | Attribute::Configurable;
define_native_function(vm.names.abs, abs, 1, attr);
define_native_function(vm.names.random, random, 0, attr);
define_native_function(vm.names.sqrt, sqrt, 1, attr);
define_native_function(vm.names.floor, floor, 1, attr);
define_native_function(vm.names.ceil, ceil, 1, attr);
define_native_function(vm.names.round, round, 1, attr);
define_native_function(vm.names.max, max, 2, attr);
define_native_function(vm.names.min, min, 2, attr);
define_native_function(vm.names.trunc, trunc, 1, attr);
define_native_function(vm.names.sin, sin, 1, attr);
define_native_function(vm.names.cos, cos, 1, attr);
define_native_function(vm.names.tan, tan, 1, attr);
define_native_function(vm.names.pow, pow, 2, attr);
define_native_function(vm.names.exp, exp, 1, attr);
define_native_function(vm.names.expm1, expm1, 1, attr);
define_native_function(vm.names.sign, sign, 1, attr);
define_native_function(vm.names.clz32, clz32, 1, attr);
define_native_function(vm.names.acos, acos, 1, attr);
define_native_function(vm.names.acosh, acosh, 1, attr);
define_native_function(vm.names.asin, asin, 1, attr);
define_native_function(vm.names.asinh, asinh, 1, attr);
define_native_function(vm.names.atan, atan, 1, attr);
define_native_function(vm.names.atanh, atanh, 1, attr);
define_native_function(vm.names.log1p, log1p, 1, attr);
define_native_function(vm.names.cbrt, cbrt, 1, attr);
define_native_function(vm.names.atan2, atan2, 2, attr);
define_native_function(vm.names.fround, fround, 1, attr);
define_native_function(vm.names.hypot, hypot, 2, attr);
define_native_function(vm.names.imul, imul, 2, attr);
define_native_function(vm.names.log, log, 1, attr);
define_native_function(vm.names.log2, log2, 1, attr);
define_native_function(vm.names.log10, log10, 1, attr);
define_native_function(vm.names.sinh, sinh, 1, attr);
define_native_function(vm.names.cosh, cosh, 1, attr);
define_native_function(vm.names.tanh, tanh, 1, attr);
// 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
define_property(vm.names.E, Value(M_E), 0);
define_property(vm.names.LN2, Value(M_LN2), 0);
define_property(vm.names.LN10, Value(M_LN10), 0);
define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
define_property(vm.names.PI, Value(M_PI), 0);
define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
// 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), vm.names.Math.as_string()), Attribute::Configurable);
}
MathObject::~MathObject()
{
}
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
if (number.is_negative_zero())
return Value(0);
if (number.is_negative_infinity())
return js_infinity();
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
}
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
{
#ifdef __serenity__
double r = (double)get_random<u32>() / (double)UINT32_MAX;
#else
double r = (double)rand() / (double)RAND_MAX;
#endif
return Value(r);
}
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
}
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
}
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
auto number_double = number.as_double();
if (number_double < 0 && number_double > -1)
return Value(-0.f);
return Value(::ceil(number.as_double()));
}
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
double intpart = 0;
double frac = modf(number.as_double(), &intpart);
if (intpart >= 0) {
if (frac >= 0.5)
intpart += 1.0;
} else {
if (frac < -0.5)
intpart -= 1.0;
}
return Value(intpart);
}
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i) {
auto number = vm.argument(i).to_number(global_object);
if (vm.exception())
return {};
coerced.append(number);
}
auto highest = js_negative_infinity();
for (auto& number : coerced) {
if (number.is_nan())
return js_nan();
if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
highest = number;
}
return highest;
}
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i) {
auto number = vm.argument(i).to_number(global_object);
if (vm.exception())
return {};
coerced.append(number);
}
auto lowest = js_infinity();
for (auto& number : coerced) {
if (number.is_nan())
return js_nan();
if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
lowest = number;
}
return lowest;
}
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(vm, global_object);
return MathObject::floor(vm, global_object);
}
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::sin(number.as_double()));
}
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::cos(number.as_double()));
}
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::tan(number.as_double()));
}
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
auto base = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
auto exponent = vm.argument(1).to_number(global_object);
if (vm.exception())
return {};
if (exponent.is_nan())
return js_nan();
if (exponent.is_positive_zero() || exponent.is_negative_zero())
return Value(1);
if (base.is_nan())
return js_nan();
if (base.is_positive_infinity())
return exponent.as_double() > 0 ? js_infinity() : Value(0);
if (base.is_negative_infinity()) {
auto is_odd_integral_number = exponent.is_integer() && (exponent.as_i32() % 2 != 0);
if (exponent.as_double() > 0)
return is_odd_integral_number ? js_negative_infinity() : js_infinity();
else
return is_odd_integral_number ? Value(-0.0) : Value(0);
}
if (base.is_positive_zero())
return exponent.as_double() > 0 ? Value(0) : js_infinity();
if (base.is_negative_zero()) {
auto is_odd_integral_number = exponent.is_integer() && (exponent.as_i32() % 2 != 0);
if (exponent.as_double() > 0)
return is_odd_integral_number ? Value(-0.0) : Value(0);
else
return is_odd_integral_number ? js_negative_infinity() : js_infinity();
}
VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
if (exponent.is_positive_infinity()) {
auto absolute_base = fabs(base.as_double());
if (absolute_base > 1)
return js_infinity();
else if (absolute_base == 1)
return js_nan();
else if (absolute_base < 1)
return Value(0);
}
if (exponent.is_negative_infinity()) {
auto absolute_base = fabs(base.as_double());
if (absolute_base > 1)
return Value(0);
else if (absolute_base == 1)
return js_nan();
else if (absolute_base < 1)
return js_infinity();
}
VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
if (base.as_double() < 0 && !exponent.is_integer())
return js_nan();
return Value(::pow(base.as_double(), exponent.as_double()));
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::exp(number.as_double()));
}
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::expm1(number.as_double()));
}
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_positive_zero())
return Value(0);
if (number.is_negative_zero())
return Value(-0.0);
if (number.as_double() > 0)
return Value(1);
if (number.as_double() < 0)
return Value(-1);
return js_nan();
}
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
return Value(32);
return Value(__builtin_clz((unsigned)number.as_double()));
}
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
return js_nan();
if (number.as_double() == 1)
return Value(0);
return Value(::acos(number.as_double()));
}
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() < 1)
return js_nan();
return Value(::acosh(number.as_double()));
}
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
return Value(::asin(number.as_double()));
}
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
return Value(::asinh(number.as_double()));
}
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
if (number.is_positive_infinity())
return Value(M_PI_2);
if (number.is_negative_infinity())
return Value(-M_PI_2);
return Value(::atan(number.as_double()));
}
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() > 1 || number.as_double() < -1)
return js_nan();
return Value(::atanh(number.as_double()));
}
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() < -1)
return js_nan();
return Value(::log1p(number.as_double()));
}
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
return Value(::cbrt(number.as_double()));
}
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
{
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
auto y = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
auto x = vm.argument(1).to_number(global_object);
if (vm.exception())
return {};
if (y.is_nan() || x.is_nan())
return js_nan();
if (y.is_positive_infinity()) {
if (x.is_positive_infinity())
return Value(M_PI_4);
else if (x.is_negative_infinity())
return Value(three_quarters_pi);
else
return Value(M_PI_2);
}
if (y.is_negative_infinity()) {
if (x.is_positive_infinity())
return Value(-M_PI_4);
else if (x.is_negative_infinity())
return Value(-three_quarters_pi);
else
return Value(-M_PI_2);
}
if (y.is_positive_zero()) {
if (x.as_double() > 0 || x.is_positive_zero())
return Value(0.0);
else
return Value(M_PI);
}
if (y.is_negative_zero()) {
if (x.as_double() > 0 || x.is_positive_zero())
return Value(-0.0);
else
return Value(-M_PI);
}
VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
if (y.as_double() > 0) {
if (x.is_positive_infinity())
return Value(0);
else if (x.is_negative_infinity())
return Value(M_PI);
else if (x.is_positive_zero() || x.is_negative_zero())
return Value(M_PI_2);
}
if (y.as_double() < 0) {
if (x.is_positive_infinity())
return Value(-0.0);
else if (x.is_negative_infinity())
return Value(-M_PI);
else if (x.is_positive_zero() || x.is_negative_zero())
return Value(-M_PI_2);
}
VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
return Value(::atan2(y.as_double(), x.as_double()));
}
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value((float)number.as_double());
}
// 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i) {
auto number = vm.argument(i).to_number(global_object);
if (vm.exception())
return {};
coerced.append(number);
}
for (auto& number : coerced) {
if (number.is_positive_infinity() || number.is_negative_infinity())
return js_infinity();
}
auto only_zero = true;
double sum_of_squares = 0;
for (auto& number : coerced) {
if (number.is_nan() || number.is_positive_infinity())
return number;
if (number.is_negative_infinity())
return js_infinity();
if (!number.is_positive_zero() && !number.is_negative_zero())
only_zero = false;
sum_of_squares += number.as_double() * number.as_double();
}
if (only_zero)
return Value(0);
return Value(::sqrt(sum_of_squares));
}
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
{
auto a = vm.argument(0).to_u32(global_object);
if (vm.exception())
return {};
auto b = vm.argument(1).to_u32(global_object);
if (vm.exception())
return {};
return Value(static_cast<i32>(a * b));
}
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() < 0)
return js_nan();
return Value(::log(number.as_double()));
}
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() < 0)
return js_nan();
return Value(::log2(number.as_double()));
}
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.as_double() < 0)
return js_nan();
return Value(::log10(number.as_double()));
}
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::sinh(number.as_double()));
}
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::cosh(number.as_double()));
}
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
{
auto number = vm.argument(0).to_number(global_object);
if (vm.exception())
return {};
if (number.is_nan())
return js_nan();
if (number.is_positive_infinity())
return Value(1);
if (number.is_negative_infinity())
return Value(-1);
return Value(::tanh(number.as_double()));
}
}